首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设和S2分别是来自正态总体N(0,σ2)的样本均值和样本方差,样本容量为n,判断所服从的概率分布.
设和S2分别是来自正态总体N(0,σ2)的样本均值和样本方差,样本容量为n,判断所服从的概率分布.
admin
2019-12-26
93
问题
设
和S
2
分别是来自正态总体N(0,σ
2
)的样本均值和样本方差,样本容量为n,判断
所服从的概率分布.
选项
答案
由于[*]服从[*]从而[*]服从N(0,1). 即[*]服从χ
2
(1). 又[*]服从χ
2
(n-1),故[*]服从F(1,n-1).
解析
转载请注明原文地址:https://kaotiyun.com/show/ShD4777K
0
考研数学三
相关试题推荐
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
设随机变量X的分布函数为已知P{一1<X<1}=.则a=______,b=_______.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和一1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为试求λ的矩估计量和最大似然估计量.
设总体X的密度函数分别为取自总体X容量为n的样本的均值和方差,则E(S2)=_______.
设事件A发生的概率是事件B发生概率的3倍,A与B都不发生的概率是A与B同时发生概率的2倍,若P(B)=,则P(A-B)=_________.
随机试题
患儿男,4岁8个月。因发热2天,左侧肢体瘫痪1天入院。2天前无明显诱因发热,体温40.3℃,伴头痛、呕吐2次,为胃内容物,非喷射性,于外院输液对症治疗,体温降至正常,入院前1天,患儿出现左侧肢体无力,不能站立,无发热及抽搐。查体:双下肢对称分布针尖大小紫红
2013年12月31日,甲公司某项固定资产计提减值准备前的账面价值为1000万元,公允价值为980万元,预计处置费用为80万元,预计未来现金流量的现值为1050万元。2013年12月31日,甲公司应对该项固定资产计提的减值准备为()万元。(201
下列各项中,年度终了需要转入“利润分配——未分配利润”科目的有()。
文书校对的方法有()。
400米全力跑,运动肌肉的主要供能系统为()
人们常说“品牌瓶装水品质更好”。美国广播电视网做了一个口味测试,把不同品牌的瓶装水和纽约市中心的公用饮用水装入同样的杯子中,要求人们对这些水进行品尝并评定等级。结果评价最低的是一种品质受到广泛认可的某品牌瓶装水。以下最能解释以上矛盾现象的是()。
下列结构中为非线性结构的是
在Java中,属于整数类型变量的是()。
74℃
Lookatthestatementsbelowandatthefiveextractsfromanarticleaboutlossofcontroldownwardinmanagement.Whicharticl
最新回复
(
0
)