首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,Aα3=-α1+3α2-α3,其中α1=[1,1,0]T,α2=[0,1,1]T,α3=[-1,0,1]T. (1)求A; (2)求对角矩阵A,使得A~A.
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,Aα3=-α1+3α2-α3,其中α1=[1,1,0]T,α2=[0,1,1]T,α3=[-1,0,1]T. (1)求A; (2)求对角矩阵A,使得A~A.
admin
2018-09-20
68
问题
设三阶方阵A满足Aα
1
=0,Aα
2
=2α
1
+α
2
,Aα
3
=-α
1
+3α
2
-α
3
,其中α
1
=[1,1,0]
T
,α
2
=[0,1,1]
T
,α
3
=[-1,0,1]
T
.
(1)求A;
(2)求对角矩阵A,使得A~A.
选项
答案
(1)合并α
1
,α
2
,α
3
成矩阵,并由题设条件得 A[α
1
,α
2
,α
3
]=[0,2α
1
+α
2
,一α
1
+3α
2
一α
3
] =[α
1
,α
2
,α
3
][*] 由|α
1
,α
2
,α
3
|=[*]=2≠0,知[α
1
,α
2
,α
3
]可逆,且 [*] (2)由(1)知 A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
][*] 故[α
1
,α
2
,α
3
]
-1
A[α
1
,α
2
,α
3
]=[*] 又|λE一B|=[*]=λ(λ一1)(λ+1),故B有三个不同的特征值λ
1
=0,λ
2
=1,λ
3
=一1.故B~Λ=[*].由相似矩阵的传递性,得A~B~Λ,即A~Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SkW4777K
0
考研数学三
相关试题推荐
设若ai=a3=a≠0,a2=a4=一a,求ATX=b的通解.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设X,Y为两个随机变量,且P(X≥0,Y≥0)=,P(X≥0)=P(Y≥0)=,则P{max(X,Y)≥0)=________.
设总体x的密度函数为f(x,θ)=(一∞<z<+∞),求参数θ的矩估计量和最大似然估计量.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设y(x)为微分方程y"一4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(x)dx=________.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
随机试题
涎腺造影检查的禁忌证为
某车间变电所采用需要系数法计算负荷时,有下列用电设备组:起重机负荷,其中负载持续率为ε=25%的电动机8台,额定容量共计为140kW,负载持续率为ε=40%的电动机12台,额定容量共计为320kW,需要系数Kx=0.2,cosα=0.5;大批生产金额冷加工
机电工程采用横道图来表示施工进度计划时的优点有()。
下列关于绝对购买力平价和相对购买力平价关系的说法中,正确的是()。
按照资本资产定价模式,影响特定股票预期收益率的因素有()。
高级语言的源程序需翻译成机器语言能执行的目标程序才能执行,这种翻译方式有()。
抗日战争爆发后,中国军队取得的第一次重大胜利是()
Directions:Readthetextsfromaninterviewinwhich5peopletalkedabouttheirjobs.Forquestions61to65,matchthenameo
Campshavealwaysreflectedchildren’sdreamsandparents’fears.Inthe1880s,manymiddle-classfamiliesworriedthatindustri
Muchunfriendlyfeelingtowardscomputershasbasedonthefearofwidespreadunemploymentresultingfromtheirintroduction.C
最新回复
(
0
)