首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意的x和y,有,用变量代换将f(x,y)变换成g(u,v),试求满足=u2+v2的常数a和b。[img][/img]
设对任意的x和y,有,用变量代换将f(x,y)变换成g(u,v),试求满足=u2+v2的常数a和b。[img][/img]
admin
2018-12-19
115
问题
设对任意的x和y,有
,用变量代换
将f(x,y)变换成g(u,v),试求满足
=u
2
+v
2
的常数a和b。[img][/img]
选项
答案
由题意 [*] 因此,有 [*]=a[v
2
(f’
1
)
2
+u
2
(f’
2
)
2
+2uvf’
1
f’
2
]一b[u
2
(f’
1
)
2
+v
2
(f’
2
)
2
一2uvf’
1
f’
2
] =(av
2
一bu
2
)(f’
1
)
2
+(au
2
一bv
2
)(f’
2
)
2
+2uv(a+b)f’
1
f’
2
=u
2
+v
2
。 利用(f’’
1
)
2
+(f’’
2
)
2
=4,即(f’’
2
)
2
=4一(f’’
1
)
2
得 (a+b)(v
2
一u
2
)(f’
1
)
2
+2(a+b)uvf’
1
f’
2
+4au
2
一4bv
2
=u
2
+v
2
。 因此 a+b=0,4a=1,一4b=1, 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Skj4777K
0
考研数学二
相关试题推荐
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
微分方程y’’一2y’+2y=ex的通解为____________.
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
(2010年)一个高为l的柱体形贮油罐,底面是长轴为2a短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为6时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
随机试题
患者,女,25岁。近半年来每于人多处即感紧张,胸闷,心慌,大汗淋漓,因此害怕出门,外出时必须有人陪同。该患者最可能的诊断是
2001年,中国质量协会参照美国奖建立了()
我国刑法分则将犯罪行为分为危害国家安全的行为、危害公共安全的行为、破坏社会主义市场经济秩序的行为、侵犯财产权利的行为等十类,其分类依据是
是函数f(x)在点x=x0处连续的【】
防护50W超短波治疗仪周围电磁场的安全距离为
患者男,77岁。突发惊厥,二便失禁。查体见瞳孔扩大,对光反射消失。该患者可能是
宏鑫建筑公司的一台吊车在施工作业时,因操作不当致使附近一民宅倒塌,民宅内部分家具受损,民宅内一位老人
下列房地产中,适用比较法估价的是()。
公司股东滥用公司法人独立地位和股东有限责任,逃避债务,严重损害公司债权人利益的,应当对公司债务承担连带责任。()(2016年)
下列关于能源分类表述错误的是:
最新回复
(
0
)