首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意的x和y,有,用变量代换将f(x,y)变换成g(u,v),试求满足=u2+v2的常数a和b。[img][/img]
设对任意的x和y,有,用变量代换将f(x,y)变换成g(u,v),试求满足=u2+v2的常数a和b。[img][/img]
admin
2018-12-19
48
问题
设对任意的x和y,有
,用变量代换
将f(x,y)变换成g(u,v),试求满足
=u
2
+v
2
的常数a和b。[img][/img]
选项
答案
由题意 [*] 因此,有 [*]=a[v
2
(f’
1
)
2
+u
2
(f’
2
)
2
+2uvf’
1
f’
2
]一b[u
2
(f’
1
)
2
+v
2
(f’
2
)
2
一2uvf’
1
f’
2
] =(av
2
一bu
2
)(f’
1
)
2
+(au
2
一bv
2
)(f’
2
)
2
+2uv(a+b)f’
1
f’
2
=u
2
+v
2
。 利用(f’’
1
)
2
+(f’’
2
)
2
=4,即(f’’
2
)
2
=4一(f’’
1
)
2
得 (a+b)(v
2
一u
2
)(f’
1
)
2
+2(a+b)uvf’
1
f’
2
+4au
2
一4bv
2
=u
2
+v
2
。 因此 a+b=0,4a=1,一4b=1, 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Skj4777K
0
考研数学二
相关试题推荐
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
设函数y(x)由参数方程确定,则曲线y=y(x)向上凸的x取值范围为_________.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_________.
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
随机试题
山茱萸的功效为
葡萄胎排除后,一般尿或血HCG降至正常最迟不超过
A.胃泌素B.内因子C.免疫球蛋白D.胃蛋白酶原E.生长抑素上述物质缺乏可引起巨幼细胞性贫血的是
下列各项,不属薄荷功效的是()
相须
如家具厂不服商标局驳回申请的决定,应在()前申请复审。北京市海淀区商标局对注册“北京”商标审查后而驳回的主要理由可能是()。
只有掌握了业主、设计单位、咨询单位和竞争对手的情况,承包商才能准确地报价,这说明( )也是影响建设工程投资的重要因素。
利润表中的所得税费用就是当期的所得税费用()
珍珠是好看的,泥土是不起眼的,但是泥土能铺成一条路,结合自身谈谈看法。
Inthesentence"Whenthepolicemanarrived,thehousewasfoundbrokeninto",theitalicizedpartisa(n)______.
最新回复
(
0
)