设A为n阶矩阵,且|A|=0,Aki≠0,则AX=O的通解为_______.

admin2019-08-28  12

问题 设A为n阶矩阵,且|A|=0,Aki≠0,则AX=O的通解为_______.

选项

答案C(Ak1,Ak2,…,Aki,…,Akn)T(C为任意常数)

解析 因为|A|=0,所以r(A)<n,又因为Aki≠0,所以r(A*)≥1,从而r(A)=n-1,AX=0的基础解系含有一个线性无关的解向量,又AA*=|A|E=O,所以A*的列向量为方程组AX=0的解向量,故AX=0的通解为C(Ak1,Ak2,…,Aki,…,Akn)T(C为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/SqJ4777K
0

最新回复(0)