首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(χ)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f〞(χ)<0,且f(χ)在[0,1]上的最大值为M.求证: (Ⅰ)f(χ)>0(χ∈(0,1)); (Ⅱ)自然数n,存在唯一的χn∈(0,1),使得f′
若函数f(χ)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f〞(χ)<0,且f(χ)在[0,1]上的最大值为M.求证: (Ⅰ)f(χ)>0(χ∈(0,1)); (Ⅱ)自然数n,存在唯一的χn∈(0,1),使得f′
admin
2019-07-24
44
问题
若函数f(χ)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f〞(χ)<0,且f(χ)在[0,1]上的最大值为M.求证:
(Ⅰ)f(χ)>0(χ∈(0,1));
(Ⅱ)
自然数n,存在唯一的χ
n
∈(0,1),使得f′(χ
n
)=
.
选项
答案
(Ⅰ)由题设条件及罗尔定理,[*]∈(0,1),f′(a)a=0.由f〞(χ)<0(χ∈(0,1))[*]f′(χ)在(0,1)↘ [*] (Ⅱ)由题设知存在χ
M
∈(0,1)使得f(χ
M
)=M>0. 要证f′(χ)-[*](0,1)存在零点[*]在(0,1)存在零点.对n=1,2,3,…引入辅助函数 F
n
=f(χ)-[*]χ, [*]F
n
(χ)在[0,1]连续,在(0,1)可导,要证F′
n
(χ)=(χ)-[*]在[0,1)[*]零点,只需在[0,1]中找两点,F
n
(χ)的函数值相等.F
n
(0)=f(0)=0.再找F
n
(χ)在(0,1)的一个零点. 因[*] [*]存在ξ
n
∈(χ
M
,1)使得F
n
(ξ
n
)=0. 在[0,ξ
n
][*][0,1]上对F
n
(χ)用罗尔定理[*]存在χ
n
∈(0,ξ
n
)[*](0,1),F′
n
(χ
n
)=0,即 f′(χ
n
)=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Src4777K
0
考研数学一
相关试题推荐
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是A的
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η1=(O,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
设A是,n×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(χ)表示)
设X1,X2,…,X9是来自总体X一N(μ,4)的简单随机样本,而是样本均值,则满足P{|-μ|<μ}=0.95的常数μ=_______.(Ф(1.96)=0.975)
随机试题
初产妇,28岁。妊娠31周,定期产前检查及B超检查无异常,现发现先露部宽大不规则,浮,胎心136次/分,血压正常。根据以上结果,最恰当的处理是
骨架型缓释、控释制剂包括
()是指向委托人报告订立房地产交易合同的机会或提供订立房地产交易合同的媒介服务,并收取委托人佣金的行为。
某内装饰工程因遇暴雨损坏而返工,下列关于该损失赔偿的说法中,正确的是()。
同行拆借市场的特点有()。
艺术中的“模仿说”最先是由()提出的。
科技始终是与人们日常生活休戚相关的社会事业,公众既是科技福利的享受者,也是科技风险的承担者。科技传播任何时候都不能仅限于对科技知识和方法的普及,更应将目光转向科技的不确定性、风险以及科技与社会的关系。只有如此,才能真正实现公众的理解和参与,并在公众和专家之
在刚刚闭幕的高科技交易会上,无话费手机项目正式签约。这种新型的智能广告手机有望年内面世,“打手机不花钱”将不再是梦想。以下哪项断定,最不可能与上述无话费手机的功能和特点相符?
设随机变量X和Y同分布,概率密度为f(x)=,则a的值为().
A、TheUnitedStatesCopyrightOfficecreatedit.B、Itdoesnotprotectartists’techniquesandprocedures.C、Ithasnotbeencha
最新回复
(
0
)