首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
admin
2019-09-04
91
问题
设f(x)连续,证明:∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
f(t)(x-t)dt.
选项
答案
今F(x)=∫
0
x
f(t)dt,则F’(x)=f(x),于是∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
F(t)dt, ∫
0
x
f(t)(x-t)dt=x∫
0
x
f(x)dt-∫
0
x
tf(t)dt=xF(x)-∫
0
x
tdF(t) =xF(x)-tF(t)|
0
x
+∫
0
x
F(t)dt=∫
0
x
F(t)dt. 命题得证. 方法二 因为[*]∫
0
x
[∫
0
x
f(u)du]dt=∫
0
x
f(u)du, [*]∫
0
x
f(t)(x-t)dt=[*][x∫
0
x
f(t)dt-∫
0
x
tf(t)dt]=∫
0
x
f(t)dt, 所以∫
0
x
[∫
0
x
f(u)du]dt-∫
0
x
f(t)(x-t)dt≡C
0
,取x=0得C
0
=0,故 ∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
f(t)(x-t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/SsD4777K
0
考研数学三
相关试题推荐
设函数z=z(x,y)由方程x2一6xy+10y2一2yz—z2+32=0确定,讨论函数z(x,y)的极大值与极小值.
设B=2A-E.证明:B2=E的充分必要条件是A2=A.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)当a为何值时,向量组α1,α2,α2,α4线性相关;(2)当a为何值时,向量组α1,α2,α3,α4
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设随机变量X的概率密度为已知EX=2,P{1<X<3}=求(1)a,b,c的值;(2)随机变量Y=eX的数学期望和方差.
求(|x|+|y|)dxdy.其中D是由曲线xy=2,直线y=x-1,y=x+1所围成的区域.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f”[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设一次试验中,出现事件A的概率为p,则n次试验中A至少发生一次的概率为__________,A至多发生一次的概率为_________.
若函数f(x)具有各阶导数的最大区间是(-A,A),并且在区间(-R,R)内可展开成幂级数,那么R是否恰为A?
设D=,则A31+A32+A33=________.
随机试题
悬空式桥体与黏膜的关系是
治疗肝郁之月经不调,痛经治疗痰湿壅肺之咳嗽气喘
在一次保险法课上,甲、乙、丙三位同学就保险法的有关问题展开了讨论。甲认为:①保险利益是投保人对保险标的具有的经济上的利益;②在保险合同中,投保人交付保险费,买到的只是一个将来可能获得补偿的机会,这说明保险合同具有射幸性。乙认为:①在财产保险中,如果保险
投资者在持有区间所获得的收益通常来源于()。
DuringMcDonald’searlyyearsFrenchfriesweremadefromscratcheveryday.RussetBur-bankpotatoeswere【C1】______,cutintos
以下与程序设计风格无关的是_______。
TheMexicaneconomywentoffacliffinthesecondthreemonthsof2009,withthegrossdomesticproduct【B1】______10.3percent
通知说明:35名美国学生将来校访问,请以学生会的名义写一份工作安排通知,要求每个学生会成员都要记住自己的任务。时间:6月22日上午9:00至13:00具体安排:Wordsforreference:接待室reception
A、Ithasbeenconfirmedbymanyscientists.B、Itwillbebelievedbymorepeople.C、Itisonlyarumor.D、Itlackssupportofco
Howdoesfoodaffectmoodandmind?Theanswermaylieinthechemistryofthebrainandnervoussystem.Moleculescalledneurot
最新回复
(
0
)