首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f”(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f”(ξ)≥8.
admin
2020-03-10
55
问题
设f(x)二阶可导,f(0)=f(1)=0且
f(x)=-1.证明:存在ξ∈(0,1),使得f”(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*]f(x)=-1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据泰勒公式f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,c)f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1) 整理得 f”(ξ
1
)=[*],f”(ξ
2
)=[*].当c∈(0,[*]]时,f”(ξ
1
)=[*]≥8,取ξ=ξ
1
;当c∈([*],1)时,f”(ξ
2
)=[*]≥8,取ξ=ξ
2
.所以存在ξ∈(0,1),使得f”(ξ)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/T5D4777K
0
考研数学三
相关试题推荐
判断级数的敛散性。
幂级数的收敛域为_____________________。
求函数的单调区间与极值。
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
设可导函数y=y(x)是由方程所确定,则=_____________________。
设随机变量X和Y的相关系数为0.9,若Z=2X一1,则Y与Z的相关系数为_________。
设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)联合分布率及关于X和关于Y的边缘分布率中的部分数值,试将其余数值填入表中的空白处。
差分方程△2yt-yt=2t的通解为__________。
判断下列结论是否正确?为什么?若存在x0的一个邻域(x0-δ,x0+δ,使得x∈(x0-δ,x0+δ)时f(x)=g(x),则f(x)与g(x)在x0处有相同的可导性.若可导,则f’(x0)=g’(x0).
设函数y(x)=x3+3ax2+3bx+c在x=2处有极值,其图形在x=1处的切线与直线6x+2y+5=0平行,则y(x)的极大值与极小值之差为
随机试题
网络广告与传统广告相比而言的优势包括【】
TheBestPlacetoBeBornintheWorldLastyear,theEIU(EconomistIntelligenceUnit),asistercompanyoftheEconomist,
患者,男,32岁。交通事故致头面部复合伤。伤后昏迷45分钟,造成吸人性窒息,正确的处理方法是
结核菌素(PPD)试验常用的剂量是
水利工程施工招标资格审查应主要审查潜在投标人或者投标人是否符合()等。
在商业银行管理中,安全性原则的基本含义是在放款和投资等业务经营过程中( )。
在河南,长久以来,还存在着一个曲艺的盛会——马街书会,自元代已经成俗,至今不衰。它让无数曲艺艺人为之魂牵梦绕。马街书会在河南()
案件:侦查:警察
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
目前,比较流行的UNIX系统属于哪一类操作系统?
最新回复
(
0
)