首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量,则下列命题中正确的是
设α1,α2,…,αs是n维向量,则下列命题中正确的是
admin
2018-11-22
103
问题
设α
1
,α
2
,…,α
s
是n维向量,则下列命题中正确的是
选项
A、如α
s
不能用α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s
线性无关.
B、如α
1
,α
2
,…,α
s
线性相关,α
s
不能由α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s-1
线性相关.
C、如α
1
,α
2
,…,α
s
中,任意s一1个向量都线性无关,则α
1
,α
2
,…,α
s
线性无关.
D、零向量0不能用α
1
,α
2
,…,α
s
线性表出.
答案
B
解析
(A),(C),(D)均错,仅(B)正确.
(A)中当α
s
不能用α
1
,α
2
,…,α
s-1
线性表出时,并不保证每一个向量α
i
(i=1,2,…,s-1)都不能用其余的向量线性表出.例如,α
1
=(1,0),α
2
=(2,0),α
3
=(0,3),虽α
3
不能用α
1
,α
2
线性表出,但
2α
1
一α
2
+0α
3
=0,α
1
,α
2
,α
3
是线性相关的.
(C)如α
1
,α
2
,…,α
s
线性无关,可知它的任何一个部分组均线性无关.但任一部分组线性无关并不能保证该向量组线性无关.例如
e
1
=(1,0,0,…,0),e
2
=(0,1,0,…,0),…,e
n
=(0,0,0,…,1),α=(1,1,1,…,1),
其中任意n个都是线性无关的,但这n+1个向量是线性相关的.
(D)在线性表出的定义中,对组合系数没有任何约束条件,因此,零向量可以用任何向量组线性表出,最多组合系数全取为0,即0=0α
1
+0α
2
+…+0α
s
.
其实,零向量0用α
1
,α
2
,…,α
s
表示时,如果组合系数可以不全为0,则表明α
1
,α
2
,…,α
s
是线性相关的,否则线性无关.
关于(B),由于α
1
,α
2
,…,α
s
线性相关,故存在不全为0的k
i
(i=1,2,…,s),使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0.
显然,k
s
=0(否则α
s
可由α
1
,…,α
s-1
线性表出),因此α
1
,α
2
,…,α
s-1
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/TEM4777K
0
考研数学一
相关试题推荐
设数列{xn}满足x1>0,xn+1=sinxn,n=1,2,…。证明xn存在;
已知随机变量X的分布函数F(x)是连续的严格单调函数,Y=1-2X,F(0.25)=0.75,P{Y≤k}=0.25,则k=_______。
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=_______。
设幂级数an(x-2)n在x=6处条件收敛,则幂级数(x-2)2n的收敛半径为()
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
求幂级数的收敛域,并求其和函数.
(2005)以下四个命题中,正确的是()
设f(x)在(0,a)内可导,则下列命题正确的是()
随机试题
城镇土地使用税
A被动体位B强迫坐位C强迫患侧卧位D强迫仰卧位E辗转体位泌尿系结石病人
A、了解病情的轻重和病情的进退B、了解津液的变化C、了解正邪斗争消长的情况D、了解胃气的有尤E、了解病位的深浅从舌苔的润燥可
根据程序公正的基本要求,法官应该禁止下列哪些行为?()
《公司法》第一百八十三条规定:“公司经营管理发生严重困难,继续存续会使股东利益受到重大损失,通过其他途径不能解决的,持有公司全部股东表决权()以上的股东,可以请求人民法院解散公司”。
下面是某金属公司的一组经营数据资料。(1)为核算甲种物资的计划期初库存量,在编制计划时盘点该种物质库存量150件,平均一日需要量10件,预计期发出量比收入量多30件。(2)乙种物资每月采购总量1200件,单价30元/件,年储存费率是12%,一次订购费用
对黑猩猩做“顿悟实验”的是()
()对知觉和产生消极情感有重要作用,在厌恶学习中也很重要
下面关于数据库数据模型的说法中,哪一个是错误的?()
YouwillheartheChiefExecutiveofBestValue,anAmericanchainofconveniencestores,talkingaboutachangeinthecompany’
最新回复
(
0
)