首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)
admin
2019-03-25
27
问题
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)。
选项
A、96。
B、98。
C、99。
D、100。
答案
B
解析
设X
i
(i=1,2,…,n)是装运的第i箱的质量(单位:千克),假设每辆车最多可装n箱。由条件把X
1
,X
2
,…,X
n
视为独立同分布随机变量,则n箱的总质量为
T
n
=X
1
+X
2
+…+X
n
,
由条件知
E(X
i
)=50,
=5;E(T
n
)=50n,
=5√n,
根据列维一林德伯格定理,T
n
近似服从正态分布N(50n,25n),箱数n决定于条件
P{T
n
≤5 000}=
>0.977=Φ(2),
由此可见
>2,从而n<98.019 9,即最多可以装98箱。故选(B)。
转载请注明原文地址:https://kaotiyun.com/show/TW04777K
0
考研数学一
相关试题推荐
(2013年)设函数f(x)由方程y—x=ex(1-y)确定,则=_____________。
(2004年)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的总阻力与飞机的速度
(1998年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受
(2008年)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。(Ⅰ)求总体X的分布函数F(x);(Ⅱ)求统计量的分布函数F(x);(Ⅲ)如果用作为θ的估计量,讨论它是否具有无偏性
袋中有1个红球,2个黑球与3个白球。现有放回地从袋中取两次,每次取一个球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
随机试题
假如您是一位企业高管,现在有个管理系统的项目,请您简要说说在该系统实施前要做哪些准备工作。
肾病综合征诊断依据,不包括下列哪一项表现
下颌第一双尖牙下颌第三磨牙
矿井地面变电所应当设置在()。
在企业文化中居于核心地位的是()。
荷兰作家布鲁马指出:“德国人理解二战的关键不是在斯大林格勒战役或柏林之战,而是在发现奥斯威辛集中营的那一刻;日本人的理解则不在珍珠港或中途岛之战,而是广岛原子弹。”对这句话理解不正确的一项是()。
精通幼儿生理、心理和教育方面的知识属于教师的()。
计算
Java的I/O流包括字节流、【】、文件流、对象流和管道流。
31.Thefewerrestrictionsthereareontheadvertisingoflegalservices,themorelawyerstherearewhoadvertisetheirservi
最新回复
(
0
)