首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
admin
2019-08-12
70
问题
设A是n阶非零矩阵,A
m
=0,下列命题中不一定正确的是
选项
A、A的特征值只有零.
B、A必不能对角化.
C、E+A+A
2
+…+A
m-1
必可逆.
D、A只有一个线性无关的特征向量.
答案
D
解析
设Aα=λα,α≠0,则A
m
α=λ
m
α=0.故λ=0.选项A正确.
因为A≠0,r(A)≥1,那么Aχ=0的基础解系有n-r(A)个解,即λ=0有n-r(A)个线性无关的特征向量.故选项B正确,而选项D不一定正确.
由(B-A)(E+A+A
2
+…+A
m-1
)=E-A
m
=E,知选项C正确.
故应选D.
转载请注明原文地址:https://kaotiyun.com/show/TgN4777K
0
考研数学二
相关试题推荐
(88年)设f(x)在(一∞,+∞)内有连续导数,且m≤f(x)≤M.a>0(1)求∫-aa[f(t+a)一f(t一a)]dt.(2)求证:
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程.并求该微分方程满足条件的解.
已知y1=3,y2=3+x2,y3=3+ex.是二阶线性非齐次方程的解,求方程通解及方程.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
咳嗽痰多,痰中带血,伴有月经淋漓不止者,宜选
取得大学本科学历,工作满()年,其中从事房地产经纪业务工作满()年,可申请参加房地产经纪人职业资格考试。
项目决策分析与评价的本质是对项目建设和生产过程中各种经济因素给出明确、综合的数量概念,通过()的分析、比较确定取舍。
当事人在听证中的权利和义务包括()。
下列做法,符合证券市场“三公”原则的是()。
企业发生的下列事项中,影响“投资收益”的是()。
点点爱发脾气,经常大哭大闹、大吼大叫,这种心理现象体现的是()
在过去相当长的一段时期,我们一直把苏联模式的社会主义当作标准的社会主义,但上个世纪八十年代开始,人们开始重新思考“什么是社会主义,怎样建设社会”,以及社会主义是不是只能有苏联那样一种模式等问题。 此段话的逻辑前提是()。
小说起源于事实与虚构、真与伪的辩证与争夺,稗官是这场争夺的一方,另一方面是那些无名的作者和听众、读者。接下来最可能论述的是()。
2013年3月20日,姚某、刘某通过特快专递,要求福建省永泰县国土资源局书面公开二申请人房屋所在区域地块拟建设项目的“一书四方案”(此时福建省人民政府已作出征地批复),即建设用地项目呈报说明书、农用地转用方案、补充耕地方案、征收方案、供地方案。2013年5
最新回复
(
0
)