首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cos xdx=∫0πf(x)sin xdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cos xdx=∫0πf(x)sin xdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2020-03-10
30
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cos xdx=∫
0
π
f(x)sin xdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sin x>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sin xdx>0或∫
0
π
f(x)sin xdx<0,与题设矛盾。 所以f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法,假设f(x)在(0,π)’内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号 (且不等于零),否则与∫
0
π
f(x)sin xdx=0矛盾,这样,函数sin(x—x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负。 那么有:x
0
f(x)sin(x—x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x—x
0
)dx—∫
0
π
f(x)(sin xcos x
0
—cos xsin x
0
)dx =cos x
0
∫
0
π
f(x)sin xdx—sin x
0
∫
0
π
f(x)cos xdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TrD4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正反面各出现一次},A4={正面出现两次},则事件()
设四元齐次线性方程组求:(1)与(2)的公共解。
求下列积分。设f(x)=∫1xe-y2dy,求∫01x2f(x)dx;
计算二重积分(x+y)3dxdy,其中D由曲线x=与直线x+√2y=0及x一√2y=0围成。
设三阶矩阵A的特征值λ1=l,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一l,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n-1。
设二维随机变量(X,Y)在区域G={(x,y)|l≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(X,Y)的边缘概率密度fx(x)和fy(y);
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥|f(x)|。
已知函数y=y(x)在任意点x处的增量且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于()
随机试题
肿而色红,皮薄光泽,焮热疼痛者,多肿势或软如绵、馒,或硬如结核,不红不热者,多
右侧结肠癌最多见的大体形态是( )。【2005年考试真题】
世行、亚行的反腐败措施包括()
土地转让是()再转移的行为。
下列有关房地产广告的表述中,错误的是()。
托收业务中的PRICIPAL是指:
十八届三中全会指出,公有制为主体、多种所有制经济共同发展的基本经济制度,是中国特色社会主义制度的重要支柱,也是社会主义市场经济体制的根基。公有制经济和非公有制经济都是社会主义市场经济的重要组成部分,都是我国经济社会发展的重要基础。必须毫不动摇巩固和发展公有
某甲,26岁,1995年因故意伤害罪被判有期徒刑3年,1998年刑满释放。甲服刑前曾借给乙2000元钱。刑满出狱后,甲多次找乙索要,但乙以种种借口不予归还。2001年某日,甲再次到乙家索要欠款,乙不仅拒绝还款,并对甲进行辱骂。甲恼怒之下冲上去与乙厮打在一
反映资本家对工人的剥削程度的公式是()
设某厂家打算生产一批商品投放市场,已知该商品的需求函数为.且最大需求量为6,其中x表示需求量,P表示价格.画出收益函数的图形.
最新回复
(
0
)