首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2ax1x2+2bx1x3+2cx2x3,该二次型的矩阵为A,且Aα0=α0. (Ⅰ)求a,b,c; (Ⅱ)求正交矩阵Q,使得二次型在变换X=QY下化为标准形.
设二次型f(x1,x2,x3)=2ax1x2+2bx1x3+2cx2x3,该二次型的矩阵为A,且Aα0=α0. (Ⅰ)求a,b,c; (Ⅱ)求正交矩阵Q,使得二次型在变换X=QY下化为标准形.
admin
2021-03-10
51
问题
设二次型f(x
1
,x
2
,x
3
)=2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,该二次型的矩阵为A,
且Aα
0
=α
0
.
(Ⅰ)求a,b,c;
(Ⅱ)求正交矩阵Q,使得二次型在变换X=QY下化为标准形.
选项
答案
(Ⅰ)由题知,A=[*],f=X
T
AX, 由Aα
0
=α
0
,得[*] 从而[*]解得a=1,b=1,c=-1, (Ⅱ)由(Ⅰ)得A=[*] 由|λE-A|=[*]=(λ+2)(λ-1)
2
=0得λ
1
=-2,λ
2
=λ
3
=1. 由-2E-A→2E+A=[*]得λ
1
=-2对应的线性无关的特征向量为α
1
=[*] 由E-A=[*]得λ
2
=λ
3
=1对应的线性无关的特征向量为α
2
=[*] 令β
1
=α
1
=[*], β
2
=α
2
=[*],β
3
=α
3
-[*] 单位化得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U784777K
0
考研数学二
相关试题推荐
[*]
[*]
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表
(97)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=,则(A—E)-1=_______.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
设f(x)在(0,+∞)内一阶连续可微,且对∈(0,+∞)满足+xf(x)+x3,又f(1)=0,求f(x).
随机试题
传播学的分支有
A.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部B.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部,有结膜充血及分泌物C.睑结膜面可见膜状物,剥离时结膜面出血D.滤泡形态不一,大小不等,有乳头肥大及角膜血管翳E.绒状小乳头,滤泡很少见慢性
井径比是指( )。
库存现金是由()经管的。
去污粉(专用来擦洗玻璃)
曾几何时,由于技术的限制,人类眼中的海洋只有临近的一片水域;而今,借助高新技术设备.人们的视野投向更深更广阔的海域,海洋的神秘面纱逐步被揭开。这表明()。①实践具有社会历史性②实践具有直接现实性③实践是认识发展的动力④实践是认识的目的和归宿
最近某市泥头车事故多发,你是该市宣传部的工作人员。怎么组织一次关于此事件的新闻发布会?
假设变量a的内容是"计算机软件工程师",变量b的内容是"数据库管理员",表达式的结果为"数据库工程师"的是
Afair
A、 B、 C、 C
最新回复
(
0
)