首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
admin
2019-01-19
63
问题
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x
2
+
≤1}上的最大值和最小值。
选项
答案
根据题意可知[*]=一2y,于是f(x,y)=x
2
+C(y),且 C'(y)=一2y,因此有C(y)=一y
2
+C,由f(1,1)=2,得C=2,故 f(x,y)=x
2
一y
2
+2。 令[*]=0得可能极值点为x=0,y=0。且 A=[*]=一2. Δ=B
2
一AC=4>0,所以点(0,0)不是极值点,也不可能是最值点。 下面讨论其边界曲线x
2
+[*]=1上的情形,令拉格朗日函数为 F(z,y,λ)=f(x,y)+λ(x
2
+[*]一1), 解 [*] 得可能极值点x=0,y=2,λ=4;x=0,y=一2,λ=4;x=1,y=0,λ=一1;x=一1,y=0,λ=一1。 将其分别代入f(x,y)得f(0,±2)=一2,f(±1,0)=3,因此z=f(x,y)在区域D={(x, y)|x
2
+[*]≤1}内的最大值为3,最小值为一2。
解析
转载请注明原文地址:https://kaotiyun.com/show/V6P4777K
0
考研数学三
相关试题推荐
已知二次曲面方程χ2+ay2+z2+2bχy+2χz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4.求a,b的值和正交矩阵P.
设有非齐次线性方程组已知3阶矩阵B的列向量均为此方程组的解向量,且r(B)=2.求参数k的值及方程组的通解;
以y=C1cosx+C2sinx+e2x(其中C1,C2为任意常数)为通解的二阶线性常系数非齐次微分方程是_________.
设f(x)=nx(1一x)n(n=1,2,…),Mn是f(x)在[0,1]上的最大值,求Mn.
计算积分I=.
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+2lny+3lnz在球面x2+y2+z2=6r2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤108()6成立.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组的通解,并说明理由。
给出满足下列条件的微分方程:(Ⅰ)方程有通解y=(C1+C2x+x—1)e—x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解y1=cos2x一xsin2x.
求下列微分方程的通解或特解:
随机试题
在圆x2+y2=5x内过点有n条弦,且这几条弦的长度成等差数列,设最短弦长为数列首项a1,最长弦长为末项an,若公差,那么n的取值集合为()。
卵巢肿物蒂扭转其蒂由________、________、________组成。
痛风急性发作期应禁用的药物是()。
基金清算程序是()。
甲承租乙的住房,租期未满,乙有意将该住房出售。根据合同法律制度的规定,下列表述中,正确的有()。甲公司是否取得已受领自行车的所有权?并说明理由。
中国名酒是由国家有关部门组织的评酒机构间隔一定时期经过严格的评定程序确定的,它代表了我国酿酒行业酒类产品的精华。()
下列文种经常用“会议认为”“会议指出”等惯用语的是()。
鲁迅在评《三国演义》时说:“至于写人,亦颇有失,以致欲显刘备之长厚而似伪,状诸葛之多智而近妖。”这一评语所蕴含的哲理是()。
简述我国政府职能转变的内容和措施。
TodayIwouldliketotellyouabouttheeffectsofoldageonhealth.Actuallytodayalotof【C1】______havetakenplaceinthe
最新回复
(
0
)