首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,A的秩为2,且 (I)求A的所有特征值与特征向量. (II)求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且 (I)求A的所有特征值与特征向量. (II)求矩阵A.
admin
2016-04-11
58
问题
设A为3阶实对称矩阵,A的秩为2,且
(I)求A的所有特征值与特征向量.
(II)求矩阵A.
选项
答案
(I)由于A的秩为2,故O是A的一个特征值.由题设可得 [*] 所以,一1是A的一个特征值,且属于一1的特征向量为k
1
(1,0,一1)
T
,k
1
为任意非零常数;1也是A的一个特征值,且属于1的特征向量为k
2
(1,0,1)
T
,k
2
为任意非零常数. 设x=(x
1
,x
2
,x
3
)
T
为A的属于0的特征向量,由于A为实对称矩阵,A的属于不同特征值的特征向量相互正交,则 [*] 解得上面齐次线性方程组的基础解系为(0,1,0)
T
,于是属于0的特征向量为k
3
(0,1,0)
T
,其中k
3
为任意非零 常数. (Ⅱ) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VAw4777K
0
考研数学一
相关试题推荐
,求f(x)的间断点并对其分类。
设f(x)在[a.b]上连续,任取xi∈[a,b](i=1,2,…,n)任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…kn)f(ξ).
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:存在ξ∈(0,1),使得
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
设有三个线性无关的特征向量,则()
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。求λ的值及矩阵A;
设f(x)在[2,+∞)上可导,f(x)>0,f(2)=1,且满足[xf(x)]’≤-kf(x)(k为大于零的常数),则()
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
糊剂的临床适应证包括
区域内的城市化水平调查应包括的内容有()。
在工程网络计划中,工作K的最早开始时间为第18天,持续时间为5天。该工作有3项紧后工作,它们的最早开始时间分别为第25天、第27天和第30天,则工作K的自由时差为( )。
价值工程的目标在于提高工程对象的价值,它追求的是( )。
某工业企业1998年基本建设的投资费用为:生产性设施的基本投资费用为1000万元,非生产性的职工宿舍700万元,综合费用200万元,其中:除银行贷款利息为40万元,预缴投资方向调节税20万元,设备试车费10万元外,均为生产性设施的综合费用,则综合分摊率为(
简述情绪和情感的关系。
被称为“教育心理学之父”的是()。
结合我国社会主义法治建设的实际,论述全面推进依法治国的重大意义及基本原则。
Readthefollowingpassage.Eightsentenceshavebeenremovedfromthearticle.ChoosefromthesentencesA~Htheonewhich
AllChange[A]Thebasicmodeloftheelectricityindustrywastosendhighvoltagesoverlongdistancestopassivecustomers.Po
最新回复
(
0
)