首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2020-03-10
45
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一令A=[*],因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,即β为方程AX=0的解,而α
1
,α
2
,…,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0 因为α
1
,α
2
,…,α
n
与β正交,所以k
0
β
T
β=0,即k
0
‖β‖
2
=0,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…=k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/VND4777K
0
考研数学三
相关试题推荐
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设随机变量X和Y都服从标准正态分布,则
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)=bF2(x)是某一随机变量的分布函数,在下列给定的各组值中应取().
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
设F1(x)与F2(x)分别是随机变量X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取
设X1,X2,…,Xn是取自总体X的简单随机样本,记则
下列条件不能保证n阶实对称阵A正定的是()
设函数f(x),g(x)具有二阶导数,且g"(x)
设f(x)在区间[2,4]上具有二阶连续导数f’’(x),且f(3)=0,证明存在一点ξ∈(2,4),使得
以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为()
随机试题
,1/2,4,(),256
I型超敏反应中发挥重要作用的抗体类型是
自然铜的主成分是石膏的主成分是
地下工程的防水设计,宜优先考虑采用()防水方法。
根据商业习惯,茶叶可分为绿茶、红茶、()和花茶。
义利之辩是我同古代伦理学上争论激烈的一个问题,争论的实质是把什么作为判断事物价值的标准,下列主张以“利”作为判断事物价值标准的是:
一344,17,一2,5,(),65。
【工具理性】北京大学2006年世界通史真题
•Lookatthenotesbelow.•Someinformationismissing.•YouwillhearaninterviewbetweenAnnaMarsh,whoworksforabusiness
A、Hemightmovetoanothercityverysoon.B、Thewoman’sexaggeratingtheseriousnessofthepollution.C、Theairpollutionisc
最新回复
(
0
)