首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(χ)在(-∞,+∞)内二阶可导,f〞(χ)<0,=1,则f(χ)在(-∞,0)内( ).
f(χ)在(-∞,+∞)内二阶可导,f〞(χ)<0,=1,则f(χ)在(-∞,0)内( ).
admin
2019-02-01
45
问题
f(χ)在(-∞,+∞)内二阶可导,f〞(χ)<0,
=1,则f(χ)在(-∞,0)内( ).
选项
A、单调增加且大于零
B、单调增加且小于零
C、单调减少且大于零
D、单调减少且小于零
答案
B
解析
由
=1,得f(0)=0,f′(0)=1,因为f〞(χ)<0,所以f′(χ)单调减少,在(-∞,0)内f′(χ)>f′(0)=1>0,故f(χ)在(-∞,0)内为单调增函数,再由f(0)=0,在(-∞,0)内f(χ)<f(0)=0,选B.
转载请注明原文地址:https://kaotiyun.com/show/Vuj4777K
0
考研数学二
相关试题推荐
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设f在点(a,b)处的偏导数存在,求.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k=____________。
微分方程y′=的通解为_______.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
微分方程y’-xe-y+=0的通解为______
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于().
随机试题
急性心肌梗死并发心力衰竭时,在梗死发生后24小时内不宜使用的药物是
下列哪项为急性肾炎综合征必备的临床表现
施工项目质量计划的内容不包括( )。
【背景资料】某高校新建一栋办公楼和一栋实验楼,均为现浇钢筋混凝土框架结构。办公楼地下1层,地上11层,建筑檐高48m;实验楼6层,建筑檐高22m。建设单位与某施工总承包单位签订了施工总承包合同。合同约定:(1)电梯安装工程由建设单位指定分包;(2)保温工程
Thetraditionaldistinctionbetweenproductsthatsatisfyneedsandthosethatsatisfywantsisnolongeradequatetodescribec
世人欣赏苏东坡的文采之美.更赞叹他豁达的心胸和积极的人生态度。他的这一人生境界在《定风波》中表现得_________。途中遇雨,触动了他敏感的心灵。仕途多舛,宦海沉浮,与眼前这场_________的山雨何其相似,苏轼一样_________。“达则兼济天下,
两个半径为R的正交圆柱体所围成立体的表面积S等于()
将当前表中有删除标记的记录物理删除的命令是
李老师制作完成了一个带有动画效果的PowerPoint教案,她希望在课堂上可以按照自己讲课的节奏自动播放,最优的操作方法是
Thesearedarkdaysforthebookbusiness.Borders,aonce-hugebookseller,(1)_____onJuly18ththatitwillclosedownitsrem
最新回复
(
0
)