设函数u1(x),u2(x),…,un(x)均可导,f(x)=u1(x)u2(x)·…·un(x),写出f(x)的求导公式.

admin2022-09-08  0

问题 设函数u1(x),u2(x),…,un(x)均可导,f(x)=u1(x)u2(x)·…·un(x),写出f(x)的求导公式.

选项

答案由题意得   f’(x)=[u1(x)u2(x)·…·un(x)]’    =u’1(x)[u2(x)…un(x)]+u1(x)[u2(x)…un(x)]’    =u’1(x)[u2(x)…un(x)]+u1(x){u’2(x)[u3(x)…un(x)]+u2(x)[u3(x)…un(x)]’}    =…    =u’1(x)u2(x)·…·un(x)+u1(x)u’2(x)·…·un(x)+…+u1(x)u2(x)·…·u’n(x).

解析
转载请注明原文地址:https://kaotiyun.com/show/WBe4777K
0

最新回复(0)