首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
admin
2018-12-29
65
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
—a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程组Ax=b的通解。
选项
答案
已知a
2
,a
3
,a
4
线性无关,则r(A)≥3。又由a
1
,a
2
,a
3
线性相关可知a
1
,a
2
,a
3
,a
4
线性相关,故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 a
1
=2a
2
—a
3
[*]a
1
—2a
2
+a
3
=0[*](a
1
,a
2
,a
3
,a
4
)[*]=0, 所以x=(1,—2,1,0)
T
是方程组Ax=0的基础解系。 又由b=a
1
+a
2
+a
3
+a
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为x=(1,1,1,1)
T
+c(1,—2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/WXM4777K
0
考研数学一
相关试题推荐
设,其中a,A都是常数,则()
求下列极限:(I)w=(Ⅱ)w=
在一系列的独立试验中,每次试验成功的概率为p,记事件A=“第3次成功之前失败4次”,B=“第10次成功之前至多失败2次”,则P(A)=_______;P(B)=______.现进行n次重复试验,则在没有全部“失败”的条件下,“成功”不止一次的概率q=___
设随机变量X的概率密度函数,则Y=3X的概率密度为()
设z=z(x,y)是由方程Ф(cx-az,cy-bz)=0确定的隐函数,其中Ф(u,v)具有连续偏导数,则=______.
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值为()
微分方程=(x-y)(x+y),=cosy+x,③y2dx-(y2+2xy-y)dy=0中,一阶线性微分方程是()
由曲线y=|lnx|,直线x=,x=e及y=0所围成的图形的面积为()
已知曲线积(A为常数),其中φ(y)具有连续的导数,且φ(1)=1.L是围绕原点O(0,0)的任意分段光滑简单正向闭曲线.求函数φ(y)的表达式,及常数A的值.
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,且X与Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
随机试题
(2019年招远)教育体制其实就是教育制度。()
一老年患者以”不能嚼碎食物,要求修复”来医院治疗,临床检查发现,口内仅有左上1237、右上126、左下456、右下4567存在,这些牙无明显松动,无颞下颌关节及咀嚼肌不适,患者不能嚼碎食物的主要原因是
下列哪种情况骨髓红系增生情况与网织红细胞计数不一致()
银行对账在每月月末进行。()
某股份有限公司2007年3月公开发行3年期公司债券1000万元,1年期公司债券500万元。2009年1月,该公司鉴于到期债券已偿还且具备再次发行公司债券的其他条件,计划再次申请发行公司债券。经审计确认该公司当期净资产额为6000万元。该公司此次发行公司债券
企业享受的下列税收优惠中,属于企业会计准则规定的政府补助的是()。
填入问号处最恰当的是?
我国《宪法》第5条规定,一切违反()的行为,必须予以追究。
现代计算机中采用二进制数字系统是因为它()。
A、去过青岛和海南B、想去海南和桂林C、想去桂林和青岛D、想去上海和海南A根据对话中男的说的“这两个地方我都去过”这句话,可知他去过海南和青岛,所以选A。
最新回复
(
0
)