首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
admin
2018-12-29
67
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
—a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程组Ax=b的通解。
选项
答案
已知a
2
,a
3
,a
4
线性无关,则r(A)≥3。又由a
1
,a
2
,a
3
线性相关可知a
1
,a
2
,a
3
,a
4
线性相关,故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 a
1
=2a
2
—a
3
[*]a
1
—2a
2
+a
3
=0[*](a
1
,a
2
,a
3
,a
4
)[*]=0, 所以x=(1,—2,1,0)
T
是方程组Ax=0的基础解系。 又由b=a
1
+a
2
+a
3
+a
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为x=(1,1,1,1)
T
+c(1,—2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/WXM4777K
0
考研数学一
相关试题推荐
xOy面上的椭圆绕x轴旋转所得旋转曲面的方程为_______,绕y轴旋转所得旋转曲面的方程为_______.
设可导函数x=x(t)由方程确定,其中可导函数φ(u)>0,且φ(0)-φ’(0)=1,则x’’(0)=________.
设(X,Y)的概率密度为f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,存在且不为0,则X与Y的概率密度fX(x),fY(y)分别为()
设α1=(1+λ,1,1),α2=(1,1+λ,1),α3=(1,1,1+λ),若β=(0,λ,λ2)可以由α1,α2,α3线性表示且表示法是唯一的,则λ应满足的条件是_______.
设A是3阶矩阵,α1=(1,2,-2)T,α2=(2,1,-1)T,α3=(1,1,t)T是齐次线性方程组Ax=0的解向量,则()
设线性方程组(Ⅰ)有非零公共解,则参数a=_________.
设A是n阶可逆矩阵,满足A2=E,则R(A-E)+R(A+E)=_________.
齐次线性方程组的基础解系中有()
证明:正项级数与数列{(1+a1)(1+a2).….(1+n)}是同敛散的.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
随机试题
慢性肾衰肾功能不全代偿期,肌酐清除率在__________以上。
下列胆色素结石形成的原因中,应除外()。
可拮抗醛固酮作用的药物是()。
应付压力引起的情感变化首先是()。
城市桥梁工程在进行混凝土浇筑时,常采用的方法有()浇筑。
资金的时间价值是客观存在的,为了最大限度地获取其时间价值,应该( )。
房地产开发一般可以划分的阶段依次顺序为()。
假定同一市场上的两个竞争厂商,他们的市场需求曲线分别为PX=1000—5Qx和Py=1600—4Qy,这两家厂商现在的市场销售量分别为100单位X和250单位Y。(浙江财经学院,2011)要求:(1)求X和Y当前的需求价格弹性。(
BlackBerrymakerResearchinMotion(RIM)hascomebottomofalistoftheworld’sgreenestelectronicsfirms.TheCanadian-base
Biogas:aSolutiontoManyProblemsInalmostalldevelopingcountries,thelackofadequatesuppliesofcheap,convenienta
最新回复
(
0
)