首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
admin
2018-09-25
65
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A-E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, 由题设有Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代入(*)式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式 [*] 必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β] [*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WYg4777K
0
考研数学一
相关试题推荐
计算行列式Dn=之值.
设f(x)在(-∞,+∞)可导,且f(x)=A,求证:c∈(-∞,+∞),使得f′(c)=0.
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中后k,M为常数,求证:f(x)<(x>1).
设L为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续.(Ⅰ)L关于y轴对称(图9.40),则其中L1是L在右半平面部分.(Ⅱ)L关于x轴对称(图9.41),则其中L1是L在上半平面部分.
求I=(x2+y2+z2)dS,其中(Ⅰ)S:x2+y2+z2=2Rx;(Ⅱ)S:(x-a)2+(y-b)2+(z-c)2=R2.
计算曲面积分x2zcosγdS,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
设F(t)=f(x2+y2+z2)dv,其中f为连续函数,f(0)=0,f′(0)=1,则=().
设f(x,y,z)是连续函数,f(0,0,0)=0,I(R)=f(x,y,z)dxdydz则R→0时,下面说法正确的是().
求幂级数的收敛区间与和函数f(x)。
随机试题
(2019年省属)关于中国现代作家,下列说法正确的是()
在刑事诉讼中,鉴定人应当具备的条件是
【2013—3】题11~15:某企业新建35/10kV变电所,10kV侧计算有功功率17450kW,计算无功功率11200kvar,选用两台16000kVA的变压器,每单台变压器阻抗电压8%,短路损耗为70kW。两台变压器同时工作,分列运行,负荷平均分配,
所谓安全生产“三同时”,是指( )。
2013年10月份,我国移动电话用户总数达到12.16亿户,占电话用户总数的81.9%。固定互联网宽带接人用户净增128.7万户,日均新增户数由上年同期的7.4万户下降至5.7万户,总数达1.87亿户。移动互联网用户总数达到8.17亿户,其中3G上
公车改革推行后,各地市推行时处处受阻,而中央推行时却一路畅通。对此。你怎么看?
甲公司拥有一项汽车仪表盘的发明专利,其权利要求记载的必要技术特征可以分解为a+b+c+d共四项。乙公司制造四种仪表盘,其必要技术特征可以作四种分解,甲公司与乙公司的必要技术特征所代表的字母相同,表明其相应的必要技术特征相同或等同。乙公司的哪项技术没有侵犯甲
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
Accordingtoonesurveyof12,000people,about30percentofthosemakingNewYear’sresolutionssaytheydon’tevenkeepthem
A、Therewillbeaboominhousing.B、Thehousemarketwillsufferdepression.C、Thebankwillexertpositiveinfluenceonhousin
最新回复
(
0
)