首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
admin
2018-09-25
40
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A-E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, 由题设有Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代入(*)式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式 [*] 必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β] [*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WYg4777K
0
考研数学一
相关试题推荐
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
证明:x-x2<ln(1+x)<x(x>0).
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
求下列旋转体的体积V:(Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体;(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
要设计一形状为旋转体水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受上部桥墩的平均压强为常数p.设水泥的比重为ρ,试求桥墩的形状.
设齐次线性方程组的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
(1995年)设函数f(x)在区间[0,1]上连续,并设求
设求f(x)的间断点并判定其类型.
随机试题
患者,女,42岁。以肉眼血尿前来就诊。尿常规检查示:红细胞满视野。并见有尿频、尿急、尿痛症状。肾B超检查未见异常。舌质红,舌苔薄黄,脉弦数。最佳选药是
A、吡嗪酰胺B、利福平C、对氨基水杨酸D、异烟肼E、乙胺丁醇常见关节痛的药物是()。
下列说法错误的是()。
甲企业为增值税一般纳税人,2016年度取得销售收入8800万元,销售成本为5000万元,会计利润为845万元,2016年,甲企业其他相关财务资料如下:(1)在管理费用中,发生业务招待费140万元,新产品的研究开发费用280万元(未形成无形资产
下列各项属于信息系统的有()。
主张教育目的取决于人的本性和本能的需要,这一思想流派的代表人物是()。
以下不属于西周时期立法指导思想的有()。
What’sthereasonthatGermany’schimneysweepsareunderattack?Whichofthefollowingisthebesttitleofthepassage?
Ourstatisticsshowthatweconsumeallthatwearecapableofproducing.
A、Buyahouseoranapartmentoftheirown.B、Borrowsomemoneyfromthewoman.C、Sellthehousetheyarelivingin.D、Findana
最新回复
(
0
)