首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,0,6)T,α4=(0,1,3,a)T, 那么a=8是α1,α2,α3,α4线性相关的( )
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,0,6)T,α4=(0,1,3,a)T, 那么a=8是α1,α2,α3,α4线性相关的( )
admin
2019-01-19
49
问题
设α
1
=(1,2,3,1)
T
,α
2
=(3,4,7,一1)
T
,α
3
=(2,6,0,6)
T
,α
4
=(0,1,3,a)
T
,
那么a=8是α
1
,α
2
,α
3
,α
4
线性相关的( )
选项
A、充分必要条件。
B、充分而非必要条件。
C、必要而非充分条件。
D、既不充分也非必要条件。
答案
B
解析
n个n维向量的线性相关性一般用行列式|α
1
,α
2
,…,α
n
|是否为零判断。
因为|α
1
,α
2
,α
3
,α
4
|=
当a=8时,行列式|α
1
,α
2
,α
3
,α
4
|=0,向量组α
1
,α
2
,α
3
,α
4
线性相关,但a=2时仍有行列式
|α
1
,α
2
,α
3
,α
4
|=0,所以a=8是向量组α
1
,α
2
,α
3
,α
4
线性相关的充分而非必要条件,故选B。
转载请注明原文地址:https://kaotiyun.com/show/WbP4777K
0
考研数学三
相关试题推荐
(04年)设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别是来自总体X和Y的简单随机样本,则_______.
(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则【】
(91年)对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则【】
(06年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A
(87年)已知随机变量X的概率密度为求随机变量Y=的数学期望E(Y).
(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.
(94年)设有线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元,而每张奖券2元,试计算买一张奖券的平均收益.
随机试题
在运用实验法进行教学时,初中要求多指导,而高中则应有较大的独立性,体现教学方法的运用要依据()
生物地球化学循环,包括()
HespokesoquicklythatIdidnot______whathesaid.
眼动脉起于
主治脾湿证的穴位是
牙髓失活法最严重的并发症是
理财规划的流程主要包括()。[2007年11月二级真题]
某公司为减员增效,规定传达室由3人减至2人,要求轮流值白班和夜班,无周休日,节假日由保卫科人员轮流到传达室值班。2名门卫每天工作12小时,两个月后感到体力不支,拒绝双休日长期加班,与公司发生争议。该公司的行为侵犯了员工的()。
A.itgetsitsnamefromthemanwhoinventeditB.helosthissightattheageofthreeastheresultofanaccidentC.anothe
A—midfieldB—backfieldC—cheerteamD—shootE—cornerhallF—kick-offG—stoppingH—pas
最新回复
(
0
)