首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明α1,α2,…αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
证明α1,α2,…αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
admin
2017-08-18
78
问题
证明α
1
,α
2
,…α
s
(其中α
1
≠0)线性相关的充分必要条件是存在一个α
i
(1<i≤s)能由它前面的那些向量α
1
,α
2
,…,α
i-1
线性表出.
选项
答案
必要性.因为α
1
,α
2
,…,α
s
线性相关,故有不全为0的k
1
,k
2
,…,k
s
使 k
1
α
1
+k
2
α
2
+k
s
α
s
=0. 设k
s
,k
s-1
,…,k
2
,k
1
中第一个不为0的是k
i
(即k
i
≠0,而k
+1+i
=…=k
s-1
=k
s
=0),且必有i>1(若i=1即k
1
≠0,k
2
=…=k
s
=0,那么k
1
α
1
=0.于是α
1
=0与α
1
≠0矛盾.),从而k
1
α
1
+k
2
α
2
+…+k
i
α
i
=0,k
i
≠0.那么α
i
=[*] (k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
). 充分性.设有α
i
可用α
1
,α
2
,…,α
i-1
线性表示,则α
1
,α
1
,…, α
i-1
,α
i
线性相关,从而α
1
,α
2
,…,α
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wbr4777K
0
考研数学一
相关试题推荐
设平面上连续曲线y=f(x)(a≤x≤b,f(x)>0)和直线x=a,x=b及x轴所围成的图形绕x轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是__________.
设凡维向量α1,α2,…,αs的秩为r,则下列命题正确的是
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A’是对称矩阵;
下列三个命题①设的收敛域为(一R,R),则的收敛域为(一R,R);②没幂级数条件收敛,则它的收敛半径R=1;③设幂级数的收敛半径分别为R1,R2,则的收敛半径R=min(R1,R2)中正确的个数是
(I)设f(x1,x2,x3)=x12+2x22+6x32一2x1x2+2x1x3—6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定阵;(Ⅱ)设求可逆阵D,使A=DTD.
设有通解k[1,0,2,一1]T,其中k是任意常数,A中去掉第i(i=1,2,3,4)列的矩阵记成Ai,则下列方程组中有非零解的方程组是()
当x→0时,下列无穷小量中阶数最高的是
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:
设(Ⅰ)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3.(1)求二次型f的矩阵的所有特征值;(2)若二次型厂的规范形为y12+y22,求a的值.
随机试题
类毒素
原发性肝癌的常见并发症不包括
患者,女性,40岁,腰疼5年,右腿痛3年,咳嗽加重并向大腿和小腿后侧放射。反复发作,近1个月来疼痛加剧,跛行,脊柱侧凸。CT示L4~5椎间盘脱出。患者可能出现的体征是
政府投资的某工程,某监理单位承担了该工程施工招标代理和施工监理任务,该工程采用无标底公开招标方式选定施工单位。工程实施中发生了下列事件:事件1:工程招标时,A、B、C、D、E、F、G共七家投标单位通过资格预审,并在投标截止时间前提交了投标文件。评标
从拱顶截面形心至相邻两拱脚截面形心之连线的垂直距离为()。
幼儿园教育应以()为基本的活动方式。
心理学家称之为“危险期”或“心理断乳期”的时期发生在()。
下列常识中,正确的有()。
请完成以下程序,首先由一个类Example2_3实现Serializable接口,并有三个成员变量,分别为int型、double型和String型,可以用toString的方法显示这三个成员变量。在main方法中创建这个Example2_3的持久对象,根据
InEnglandeveryonetalksabouttheweather.Itisthemostcommonsubject.Theystarttalkinglikethis,"Doyouthinkitwill
最新回复
(
0
)