首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
admin
2019-03-14
39
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确.
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(Ⅰ)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价,则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.D项不对.
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线性无关,但是不是任何3个行向量都线性无关.排除A.
A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,C项也不对.
下面说明B对.(Ⅰ)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(Ⅰ)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(Ⅰ)中向量的个数,于是(Ⅰ)线性无关,由定义(Ⅰ)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/Wdj4777K
0
考研数学二
相关试题推荐
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设函数y=f(x)由参数方程所确定,其中ψ(t)具有二阶导数,且求函数ψ(t)。
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③φ(x)]没有间断点。
计算积分
设当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C。
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为________.
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,l对时间的变化率是________.
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
随机试题
PublicperceptionofsuccessintheU.S.mightbetotallymisguided.While92%ofpeoplebelieveotherscaremostaboutfame
幼儿园最常用的评价是()
急性阑尾炎发病已4天。腹痛稍减轻。但仍发热,右下腹可触及有压痛的肿块。应采取的治疗方案是
患者,女性,20岁,左下第一磨牙颌面龋洞,达牙本质浅层,探稍敏感,冷刺激进洞后稍敏感。该患牙的诊断可能为
既滋补肝肾,又清虚热的药物是
当患者发生青霉素过敏性休克时,在皮下注射0.1%盐酸肾上腺素液1ml的同时应立即
(2016年)甲股份有限公司(以下简称“甲公司”)为A股上市公司。2015年8月3日,乙有限责任公司(以下简称“乙公司”)向中国证监会、证券交易所提交权益变动报告书,称其自2015年7月20日开始持有甲公司股份,截至8月1日,已经通过公开市场交易持有该公司
陈独秀在《青年杂志》创刊号上宣称“批评时政,非其旨也。”这预示新文化运动()。
求函数f(χ)=(2-t)e-tdt的最值.
IBMresearchersareattemptingtowarmuphuman-computerrelationships.Forexample,IBM,InternationalBusinessMachines,hasb
最新回复
(
0
)