首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
admin
2019-03-14
50
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确.
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(Ⅰ)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价,则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.D项不对.
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线性无关,但是不是任何3个行向量都线性无关.排除A.
A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,C项也不对.
下面说明B对.(Ⅰ)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(Ⅰ)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(Ⅰ)中向量的个数,于是(Ⅰ)线性无关,由定义(Ⅰ)是最大无关组.
转载请注明原文地址:https://kaotiyun.com/show/Wdj4777K
0
考研数学二
相关试题推荐
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则(Ⅰ)若f〞(χ)>0(χ∈(a,b)),有f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2),(4.6)特别有
已知函数f(χ,y,z)=χ2y2z及方程χ+y+z-3+e-3=e-(χ+y+z),(*)(Ⅰ)如果χ=χ(y,χ)是由方程(*)确定的隐函数满足χ(1,1)=1,又u=f(y,z),y,z),求(Ⅱ)如果z=z(χ
当x→0时,α(x)=kx2与是等价无穷小,则k=__________.
求极限
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件的特解。
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设f(x)=则在点x=1处函数f(x)
设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
随机试题
决策与预测的关系。
女,20岁。发热、鼻出血、皮肤紫癜2周。查体:舌尖可见血疱,双下肢可见瘀斑,浅表淋巴结及肝、脾不大,胸骨压痛阴性。血常规:血红蛋白50g/L,白细胞2.0×109/L,中性粒细胞24%,淋巴细胞75%,嗜碱性粒细胞1%,血小板22×109/L,网织红细胞0
国家赔偿以()为主要方式。
根据证券交易所对证券公司自营业务管理的有关规定,会员应()编制库存证券报表。
在下列业务中,可以采用业务发生当期期初的市场汇率作为折算汇率的有()。
权利、许可证照实行按件贴花缴纳印花税。()(2015年)
M公司采用累计发生成本占预计合同总成本的比例确定完工进度,采用完工百分比法确认合同收入。M公司有关建造合同资料如下:(1)2010年M公司签订—项承担A工程建造任务的合同,该合同为固定造价合同,合同金额为1000万元。工程自2010年5月开工,预计201
小方、小艾、小宇、小路、小黄五人参加竞选。已知:如果小方所得的选票比小艾的多,或者小宇所得的选票比小路的多,那么小黄当选。如果竞选的结果,是小黄没有当选,则以下哪项论断一定成立?()
Itseemsthatpoliticiansaroundtheworldarethinkingaboutthehealthoftheircountries.WhileinChina,ChenZhuhasannoun
AnewlookatanasteroidorbitingthesunshowsitcouldpossiblysmashintotheEarthwithtremendousforce.Butexpertssay
最新回复
(
0
)