首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T. 问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T. 问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么
admin
2021-11-09
49
问题
设α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,-1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,b+3,5)
T
.
问:(1)a,b为什么数时,β不能用α
1
,α
2
,α
3
,α
4
表示?
(2)a,b为什么数时,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一?
选项
答案
利用秩来判断较简单,为此计算出r(α
1
,α
2
,α
3
,α
4
)和r(α
1
,α
2
,α
3
,α
4
,β)作比较. 构造矩阵(α
1
,α
2
,α
3
,α
4
|β),并用初等行变换化阶梯形矩阵: (α
1
,α
2
,α
3
,α
4
|β)=[*] (1)当a+1=0,而b≠0时,r(α
1
,α
2
,α
3
,α
4
)=2,而r(α
1
,α
2
,α
3
,α
4
,β)=3,因此β不能用α
1
,α
2
,α
3
,α
4
线性表示. (2)当a+1≠0时(b任意),r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=4,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一. (如果a+1=0,而b=0,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=2,因此β能用α
1
,α
2
,α
3
,α
4
线性表示,但是表示方式不唯一.)
解析
转载请注明原文地址:https://kaotiyun.com/show/Wqy4777K
0
考研数学二
相关试题推荐
设f(x)∈C(a,b),在(a,b)内可导,f(a)=f(b)=1.证明:存在ε,η∈(a,b),使得2e2ε-η=(ea+eb)[f’(η)+f(η)].
下列命题成立的是()。
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
就k的不同取值情况,确定方程x3-3x+k=0的根的个数。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D。若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
设V(t)是曲线)y=在x∈[0,t]的弧段绕x轴旋转一周所得的旋转体的体积,求常数c使得V(c)=。
设,其中D0为曲线y=(a﹥0)与y=所围成的区域,则(Ⅰ)求Ia;(Ⅱ)求a的值使得,Ia最小。
设α1,α2…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
既能用于新的陆上网络,又可对现有系统进行升级改造,特别适用于DWDM系统传输的是()光纤。
以下对施工企业项目经理的工作性质的说明,正确的是( )。
下列属于影响可转换公司债券价值的因素为()。
关于库存商品、发出商品的核算,下列说法正确的有()。
《中华人民共和国税收征收管理法》第八十八条规定,纳税人、扣缴义务人、纳税担保人同税务机关在纳税上发生争议时,必须先依照税务机关的纳税决定缴纳或者解缴税款及滞纳金或者提供相应的担保,然后可以依法申请行政复议;对行政复议决定不服的,可以依法向人民法院起诉。这体
根据《企业所得税法》的规定,企业的下列各项支出,在计算应纳税所得额时,准予从收入总额中直接扣除的有()。
镜泊湖是大约1万年前,由于()而形成的。
教育电视台是指教育行政部门开办的专业电视台。()
TheAmericanFamilyIntheAmericanfamilythehusbandandwifeusuallyshareimportantdecisionmaking.Whenthechildrenare(5
Therearethreekindsofgoals:short-term,medium-rangeandlong-termgoals.Short-rangegoalsarethosethatusuallydealwith
最新回复
(
0
)