首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T. 问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T. 问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么
admin
2021-11-09
58
问题
设α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,-1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,b+3,5)
T
.
问:(1)a,b为什么数时,β不能用α
1
,α
2
,α
3
,α
4
表示?
(2)a,b为什么数时,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一?
选项
答案
利用秩来判断较简单,为此计算出r(α
1
,α
2
,α
3
,α
4
)和r(α
1
,α
2
,α
3
,α
4
,β)作比较. 构造矩阵(α
1
,α
2
,α
3
,α
4
|β),并用初等行变换化阶梯形矩阵: (α
1
,α
2
,α
3
,α
4
|β)=[*] (1)当a+1=0,而b≠0时,r(α
1
,α
2
,α
3
,α
4
)=2,而r(α
1
,α
2
,α
3
,α
4
,β)=3,因此β不能用α
1
,α
2
,α
3
,α
4
线性表示. (2)当a+1≠0时(b任意),r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=4,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一. (如果a+1=0,而b=0,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=2,因此β能用α
1
,α
2
,α
3
,α
4
线性表示,但是表示方式不唯一.)
解析
转载请注明原文地址:https://kaotiyun.com/show/Wqy4777K
0
考研数学二
相关试题推荐
设f(x)∈C(a,b),在(a,b)内可导,f(a)=f(b)=1.证明:存在ε,η∈(a,b),使得2e2ε-η=(ea+eb)[f’(η)+f(η)].
下列命题成立的是()。
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:存在ε∈(a,b),使得f"(ε)=f(ε).
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)﹥0,过曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设V(t)是曲线)y=在x∈[0,t]的弧段绕x轴旋转一周所得的旋转体的体积,求常数c使得V(c)=。
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示?(2)a,b为什么
设α1,α2…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
A.连理汤B.驻车丸C.地榆散合槐角散D.香连丸E.乌梅丸(1995年第99,100题)久痢不愈,痢下赤白脓血,或下鲜血黏稠,脐腹灼痛,虚坐努责,食少,心烦口十,舌质红绛,少苔,或者光红乏津,脉细弱,宜选用何方()
心理健康的标准不包括
营养不良患儿皮下脂肪减少,首先累及的部位是()
下列选项中,属于原核细胞型微生物的是
病人仰卧,影像增强器转至病人左前方的摄影方向称()。
房地产经纪人在整个配对过程中,都是围绕()推荐对应价位和品质的房源。
境内某居民企业2014年取得销售货物收入2000万元,出租包装物收入10万元,国债利息收入6万元,发生与生产经营活动有关的业务招待费40万元。根据企业所得税法律制度的规定,该企业在计算2014年应纳税所得额时,准予扣除的业务招待费为()万元。
把一个项目编译成一个应用程序时,下面的叙述正确的是()。
JOBINTERVIEWSPeoplelookingforjobsusuallysendinacopyoftheirresume.Thisshouldbeusedasabasisforquestion
Atthefall2001SocialScienceHistoryAssociationconventioninChicago,theCrimeandJusticenetworksponsoredaforumonth
最新回复
(
0
)