首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).
admin
2018-05-25
36
问题
设A,B,A+B,A
-1
+B
-1
皆为可逆矩阵,则(A
-1
+B
-1
)
-1
等于( ).
选项
A、A+B
B、A
-1
+B
-1
C、A(A+B)
-1
B
D、(A+B)
-1
答案
C
解析
A(A+B)
-1
B(A
-1
+B
-1
)=[(A+B)A
-1
](BA
-1
+E)=(BA
-1
+E)
-1
(BA
-1
+E) =E,选C.
转载请注明原文地址:https://kaotiyun.com/show/XEW4777K
0
考研数学三
相关试题推荐
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b-a)∫abf(x)g(x)dx.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由.(2)α4能否由α1,α2,α3线性表出,说明理
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
随机试题
骨盆入口狭窄不会导致
为了实现进度目标,不但应进行控制,还应注意分析影响工程进度的风险,常见的影响工程进度的风险有( )。
在其他条件不变的情况下,资本价格下降所产生的规模效应会导致()。[2004年真题]
根据房产税法律制度的规定,下列各项中,不予免征房产税的是()。
有“火山地貌博物馆”之称的是()。
冯特对心理学的历史贡献主要包括()。
如图所示,一次函数y=kx+b的图像与反比例函数的图像交于A(1,2),B(—m,—1)两点.[img][/img]根据图像直接写出使一次函数的值大于反比例函数的值的x的取值范围.
2015年,全国报告发生因滥用毒品导致暴力攻击、自杀自残、毒驾肇事等极端案件事件336起,查获涉案吸毒人员349名,破获吸毒人员引发的刑事案件17.4万起,全国每年因吸毒造成的直接经济损失及禁毒相关投入超过万亿元。根据以下毒品种类示意图回答问题:关
下列行为不属于侵犯我国公民的通信自由和通信秘密的是()。
以下不属于VisualBasic数据文件的是
最新回复
(
0
)