首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可以被向量α1,α2,…,αr线性表示,证明:表示法唯一的充分必要条件是α1,α2,…,αr线性无关.
已知β可以被向量α1,α2,…,αr线性表示,证明:表示法唯一的充分必要条件是α1,α2,…,αr线性无关.
admin
2020-09-25
43
问题
已知β可以被向量α
1
,α
2
,…,α
r
线性表示,证明:表示法唯一的充分必要条件是α
1
,α
2
,…,α
r
线性无关.
选项
答案
充分性[*]:假设β有两种表示法 β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
, ① β=l
1
α
1
+l
2
α
2
+…+l
r
α
r
, ② 则k
1
,k
2
,…,k
r
与l
1
,l
2
,…,l
r
中至少有一个i使k
i
≠l
i
(1≤i≤r),①一②得 (k
1
一l
1
)α
1
+(k
2
一l
2
)α
2
+…+(k
r
一l
r
)α
r
=0. 由于存在i,使k
i
≠l
i
,即k
i
一l
i
≠0,所以k
1
一l
1
,k
2
一l
2
,…,k
r
一l
r
为不全为零的数,从而可得α
1
,α
2
,…,α
r
线性相关,矛盾,所以β的表示法唯一. 必要性[*]:假设α
1
,α
2
,…,α
r
线性相关,则存在一组不全为零的数l
1
,l
2
,…,l
r
(不妨设l
k
≠0),使l
1
α
1
+l
2
α
2
+…+l
k
α
k
+…+l
r
α
r
=0. ③ 若β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
, ④ 则③+④得β=(k
1
+l
1
)α
1
+(k
2
+l
2
)α
2
+…+(k
k
+l
k
)α
k
+…+(k
r
+l
r
)α
r
, ⑤ 由于l
k
≠0,则k
k
+l
k
≠k
k
,从而可知④与⑤是β的两种不同的表示法,矛盾.所以α
1
,α
2
,…,α
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/XJx4777K
0
考研数学三
相关试题推荐
=_____________。
已知,A*是A的伴随矩阵,那么A*的特征值是________。
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知方程组有无穷多解,则a=___________.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
随机试题
根据《保险法》的规定,分期交付保险费的人身保险合同中,投保人迟延交付保险费的宽限期是
牙间刷刷牙
小量不保留灌肠的目的不包括( )。【历年考试真题】
企业的非流动负债包括( )。
在经济发展过程中,()是重要的先决条件。
关于婴儿的胃说法错误的是()。[浙江省2011年11月三级真题]
教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取或巩固知识的方法是()。
19世纪法国作家左拉是_______。
在关系模型中,每一个二维表称为一个
DifferencesBetweenCulturesinNon-verbalCommunicationsI.Culturalinfluenceonnonverbalbehaviour—Low-contextculturesth
最新回复
(
0
)