首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可以被向量α1,α2,…,αr线性表示,证明:表示法唯一的充分必要条件是α1,α2,…,αr线性无关.
已知β可以被向量α1,α2,…,αr线性表示,证明:表示法唯一的充分必要条件是α1,α2,…,αr线性无关.
admin
2020-09-25
39
问题
已知β可以被向量α
1
,α
2
,…,α
r
线性表示,证明:表示法唯一的充分必要条件是α
1
,α
2
,…,α
r
线性无关.
选项
答案
充分性[*]:假设β有两种表示法 β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
, ① β=l
1
α
1
+l
2
α
2
+…+l
r
α
r
, ② 则k
1
,k
2
,…,k
r
与l
1
,l
2
,…,l
r
中至少有一个i使k
i
≠l
i
(1≤i≤r),①一②得 (k
1
一l
1
)α
1
+(k
2
一l
2
)α
2
+…+(k
r
一l
r
)α
r
=0. 由于存在i,使k
i
≠l
i
,即k
i
一l
i
≠0,所以k
1
一l
1
,k
2
一l
2
,…,k
r
一l
r
为不全为零的数,从而可得α
1
,α
2
,…,α
r
线性相关,矛盾,所以β的表示法唯一. 必要性[*]:假设α
1
,α
2
,…,α
r
线性相关,则存在一组不全为零的数l
1
,l
2
,…,l
r
(不妨设l
k
≠0),使l
1
α
1
+l
2
α
2
+…+l
k
α
k
+…+l
r
α
r
=0. ③ 若β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
, ④ 则③+④得β=(k
1
+l
1
)α
1
+(k
2
+l
2
)α
2
+…+(k
k
+l
k
)α
k
+…+(k
r
+l
r
)α
r
, ⑤ 由于l
k
≠0,则k
k
+l
k
≠k
k
,从而可知④与⑤是β的两种不同的表示法,矛盾.所以α
1
,α
2
,…,α
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/XJx4777K
0
考研数学三
相关试题推荐
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分xydσ=__________。
已知函数z=f(x,y)在(1,1)处可微,且设φ(x)=f[x,f(x,x)],则=__________.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
(1991年)试证明函数在区间(0,+∞)内单调增加.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为(Ⅰ)求P{Y≤EY};(Ⅱ)求Z=X+Y的概率密度.
线性方程组的通解可以表不为
设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈________.
随机试题
对于IP地址为202.93.120.6的主机来说,其网络号为
方孝孺的作品集是()
推销人员要促使顾客想象,让他觉得眼前的商品物超所值。这充分表明,在激发顾客购买欲望时,应()
多细胞真菌的微生物学检查,标本处理常用
A.络石藤B.防己C.秦艽D.五加皮E.桑寄生治疗风湿热痹首选()
男,6岁。咳嗽l周,喘息3天,无发热,门诊就诊。初步考虑肺炎,下列最有价值的是
2009年8月,由于天气干旱,农民老张的农作物缺水,老张便将某化肥厂排放的污水引入自己的农田灌溉,结果造成农作物死亡,老张要求化肥厂承担赔偿责任。下列关于此案的说法哪些是正确的?
关于每一次团体活动设计,以下哪项是不正确的?()
从社会发展的主体选择性的角度看,中国人民走上社会主义道路,其原因在于()。
WhenSpanishfootballclubBarcelonapaidUS$35millionforRonaldinholastsummer,theyweren’tbuyingaprettyface."Iam(51)
最新回复
(
0
)