首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有( )
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有( )
admin
2016-05-09
69
问题
设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(Ⅰ)Aχ=0和(Ⅱ)A
T
Aχ=0,必有( )
选项
A、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅰ)的解.
B、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解不是(Ⅰ)的解.
C、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解.
D、(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解也不是(Ⅱ)的解.
答案
A
解析
如果α是(Ⅰ)的解,有Aα=0,可得
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α是(Ⅱ)的解.故(Ⅰ)的解必是(Ⅱ)的解.
反之,若α是(Ⅱ),的解,有A
T
Aα=0,用α
T
左乘可得
α
T
(A
T
Aα)=(α
T
A
T
)(Aα)=(Aα)
T
(Aα)=α
T
0=0,
若设Aα=(b
1
,b
2
,…,b
n
),那么
(Aα)
T
(Aα)=b
1
2
+b+
2
2
…+b
n
2
=0
b
i
=0(i=1,2,…,n)
即Aα=0.亦即α是(Ⅰ)的解.因此(Ⅱ)的解也必是(Ⅰ)的解.所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/XMw4777K
0
考研数学一
相关试题推荐
若f(x)在[a,b]上连续,a<x1<x2<…<xn<b(n≥3).求.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设函数y=y(x)由方程x=dx确定,则=________
设u=u(x,y,z)是由方程ez+u-xy-yz-zu=0确定的可微函数,求u=u(x,y,z)在点P(1,1,0)处方向导数的最小值.
求微分方程y”-4y=sin3xsinx+cos2x的通解.
过曲面=4上任一点的切平面在三个坐标轴上的截距的平方和为().
计算I=∮Lx2yzdx+(x2+y2)dy+(x+y+1)dz,其中L为球面x2+y2+z2=5与旋转曲面z=1+x2+y2的交线,从z轴负向看为逆时针方向.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得_________.
随机试题
为了使企业的目标切实可行,所规定的目标应该符合的要求有()
A、龈袋B、骨上袋C、骨下袋D、复合袋E、复杂袋袋底位于牙槽嵴冠方的牙周袋称为
治疗缺血性中风肝肾阴虚,肝风内动型,应首选
胎黄湿热熏蒸证的治法为
李某8岁,其下列行为中有效的是()。
矩形截面简支梁梁中点承受集中力F。若h=26,分别采用图(a)图(b)两种方式放置,图(a)梁的最大挠度是图(b)梁的()。
甲公司有关业务资料如下:(1)2009年12月10日与乙租赁公司签订了一份租赁合同。合同主要条款如下:①租赁标的物:A型特种运输设备,由乙租赁公司根据甲公司的特殊规格要求,从某设备制造企业订购。②起租日:2009年12月31日。③租
当()球体,无论在空中或地面越过边线或端线,应判界外球。
按照共同犯罪是否有组织形式可以把共同犯罪分为()。
Foryearsthemedia,foodlabels,dietitians,andevenscientistswhoshouldknowbetterhavebombarded(轰炸)uswithadvicetol
最新回复
(
0
)