首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)证明:
(2012年)证明:
admin
2018-06-30
49
问题
(2012年)证明:
选项
答案
△证1 令[*] 一1<x<1. 显然f(x)为偶函数,因此,只要证明 f(x)≥0 x∈[0,1) 由于 [*]当x∈(0,1)时,[*] 又 [*] 则 [*] 从而有 f’(x)>0 x∈(0,1) 又 f(0)=0 则 f(x)≥0 x∈[0,1) 故原不等式成立. △证2 由证1知,只要证明f(x)≥0 x∈[0,1) 为此,先证[*]x∈[0,1) 令[*]由于 g’(x)=一sinx+x>0 x∈(0,1) 又 g(0)=0,则g(x)≥0 x∈[0,1) 要证f(x)≥0,只要证明 [*] 即,只要证[*] x∈[0,1) 令 φ(x)=ln(1+x)一ln(1一x)一x 则[*] 又φ(0)=0,则φ(x)≥0 x∈[0,1] 故[*] 证3 记[*]则 [*] 当一1<x<1时,由于[*]1+cosx≤2,所以f"(x)≥2>0,从而f’(x)单调增加. 又因为f’(0)=0,所以,当一1<x<0时,f’(x)<0;当0<x<1时,f’(x)>0,于是f(0)=0是函数f(x)在(一1,1)内的最小值. 从而当一1<x<1时,f(x)≥f(0)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XRg4777K
0
考研数学一
相关试题推荐
设D为xOy平面上的区域,若f’’xy与f’’yx都在D上连续,证明:f’’xy与f’’yx在D上相等.
设D=((x,y)|a≤x≤b,c≤y≤d),若f’’xy与f’’yx在D上连续,证明:∫∫Df’’xy(z,y)dxdy=∫∫Df’’yx(z,y)dxdy;
证明
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
微分方程的通解为________
设,其中函数f,g具有二阶连续偏导数,求
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
随机试题
在网络层中,需要对IP分组中的()进行校验。
1
颈动脉体位于
税法适用原则是指税务行政机关和司法机关运用税收法律规范解决具体问题所必须遵循的准则。下列项目中属于税法适用原则的有()。
“人不能两次踏入同一条河流”,这句话说明运动和静止的关系是()。
(2014年真题)医生甲意图杀死患者司某,将毒药给不知情的护士乙。乙粗心大意,未经检查就让司某服下毒药,司某中毒死亡。甲属于故意杀人罪的()。
(2012年多选43)组织、领导传销活动罪中“传销活动”的特征包括()。
=_______.
数据流的类型有【】和事务型。
ABiologicalClockEverylivingthinghaswhatscientistscallabiologicalclockthatcontrolsbehavior.Thebiologicalcloc
最新回复
(
0
)