首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)证明:
(2012年)证明:
admin
2018-06-30
33
问题
(2012年)证明:
选项
答案
△证1 令[*] 一1<x<1. 显然f(x)为偶函数,因此,只要证明 f(x)≥0 x∈[0,1) 由于 [*]当x∈(0,1)时,[*] 又 [*] 则 [*] 从而有 f’(x)>0 x∈(0,1) 又 f(0)=0 则 f(x)≥0 x∈[0,1) 故原不等式成立. △证2 由证1知,只要证明f(x)≥0 x∈[0,1) 为此,先证[*]x∈[0,1) 令[*]由于 g’(x)=一sinx+x>0 x∈(0,1) 又 g(0)=0,则g(x)≥0 x∈[0,1) 要证f(x)≥0,只要证明 [*] 即,只要证[*] x∈[0,1) 令 φ(x)=ln(1+x)一ln(1一x)一x 则[*] 又φ(0)=0,则φ(x)≥0 x∈[0,1] 故[*] 证3 记[*]则 [*] 当一1<x<1时,由于[*]1+cosx≤2,所以f"(x)≥2>0,从而f’(x)单调增加. 又因为f’(0)=0,所以,当一1<x<0时,f’(x)<0;当0<x<1时,f’(x)>0,于是f(0)=0是函数f(x)在(一1,1)内的最小值. 从而当一1<x<1时,f(x)≥f(0)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XRg4777K
0
考研数学一
相关试题推荐
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:,其中f(t)为定义在(-∞,+∞)上的连续正值函数,常数a>0,b>0;
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:均存在.
微分方程的特解是________
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设曲线f(x)=xn在点(1,1)处的切线与z轴的交点为(x0,0),计算
随机试题
住院中发生阑尾炎穿孔性腹膜炎和肝脓肿穿破性肺脓肿属于医院感染。()
板状腹见于
急性腹膜炎最主要的临床表现
A.化学特性B.生物效应特性C.热作用D.荧光作用E.电离作肿瘤放射治疗的基础是
关于子宫收缩乏力性产后出血首选的处理是
新中国成立后,国家立即对旧中国的保险市场进行了整顿和改造,主要措施有:接管和清理官僚资本保险公司,整顿和改造外资保险公司,排挤民族资本的保险公司。()
【背景资料】某石油化工装置进行工程招标,某一施工单位根据招标方提供的实物量清单进行投标并中标。签订工程合同后,由于工程急于开工,该施工单位在未收到施工图纸的情况下,即进行了施工组织设计的编制,施工单位在原投标书的基础上,只是进行了格式和内容的简单调整,即
假设某企业既有权益融资又有债务融资,若只有此企业的税前利润为已知,根据无公司税的MM定理,则只需再得到( )即可求出企业的价值。
旅游过程中,游客提出变更路线或日程的要求,导游人员原则上应()。
Oneofthemostcontentiousissuesinthevastliteratureaboutalcoholconsumptionhasbeentheconsistentfindingthatthosew
最新回复
(
0
)