首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)证明:
(2012年)证明:
admin
2018-06-30
48
问题
(2012年)证明:
选项
答案
△证1 令[*] 一1<x<1. 显然f(x)为偶函数,因此,只要证明 f(x)≥0 x∈[0,1) 由于 [*]当x∈(0,1)时,[*] 又 [*] 则 [*] 从而有 f’(x)>0 x∈(0,1) 又 f(0)=0 则 f(x)≥0 x∈[0,1) 故原不等式成立. △证2 由证1知,只要证明f(x)≥0 x∈[0,1) 为此,先证[*]x∈[0,1) 令[*]由于 g’(x)=一sinx+x>0 x∈(0,1) 又 g(0)=0,则g(x)≥0 x∈[0,1) 要证f(x)≥0,只要证明 [*] 即,只要证[*] x∈[0,1) 令 φ(x)=ln(1+x)一ln(1一x)一x 则[*] 又φ(0)=0,则φ(x)≥0 x∈[0,1] 故[*] 证3 记[*]则 [*] 当一1<x<1时,由于[*]1+cosx≤2,所以f"(x)≥2>0,从而f’(x)单调增加. 又因为f’(0)=0,所以,当一1<x<0时,f’(x)<0;当0<x<1时,f’(x)>0,于是f(0)=0是函数f(x)在(一1,1)内的最小值. 从而当一1<x<1时,f(x)≥f(0)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XRg4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:
设f(x)在闭区间[1,2]上可导,证明:E∈(1,2),使f(2)-zf(1)=ξf’(ξ)-f(ξ).
求曲线y=ex上的最大曲率及其曲率圆方程.
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
随机试题
男,18岁,肾衰竭后行肾移植术,供受体血型相配,术后2周发生体温升高,尿量减少,仅为每天400mL,血尿素氮升高。他发生的排斥反应是
下列药物需进行酮体检查的是
肝细胞合成的胆汁首先进入
一般认为,行政合理性原则的基本内容包括()
对施工过程及质量进行动态控制分析的方法是()。
简述幼儿同伴交往的意义。
结合实际,论述教育中三种典型的师生关系模式对学生的影响。
有两类领导:一类举重若轻,善于定观决策,把握大局:一类举轻若重,善于具体运作,谨慎细致。结合过去几年的工作,谈一谈你属于哪一类。
A、医生和病人B、妈妈和儿子C、老师和学生D、顾客和售货员B根据“妈妈,这中药也太苦了”这句话,可知他们是母子关系,所以选B。
Iwillnowteach,offeringmywayoflifetowhomeverdesirestocommitsuicidebytheschemewhichhasenablemetobethedoct
最新回复
(
0
)