(2012年)证明:

admin2018-06-30  21

问题 (2012年)证明:

选项

答案△证1 令[*] 一1<x<1. 显然f(x)为偶函数,因此,只要证明 f(x)≥0 x∈[0,1) 由于 [*]当x∈(0,1)时,[*] 又 [*] 则 [*] 从而有 f’(x)>0 x∈(0,1) 又 f(0)=0 则 f(x)≥0 x∈[0,1) 故原不等式成立. △证2 由证1知,只要证明f(x)≥0 x∈[0,1) 为此,先证[*]x∈[0,1) 令[*]由于 g’(x)=一sinx+x>0 x∈(0,1) 又 g(0)=0,则g(x)≥0 x∈[0,1) 要证f(x)≥0,只要证明 [*] 即,只要证[*] x∈[0,1) 令 φ(x)=ln(1+x)一ln(1一x)一x 则[*] 又φ(0)=0,则φ(x)≥0 x∈[0,1] 故[*] 证3 记[*]则 [*] 当一1<x<1时,由于[*]1+cosx≤2,所以f"(x)≥2>0,从而f’(x)单调增加. 又因为f’(0)=0,所以,当一1<x<0时,f’(x)<0;当0<x<1时,f’(x)>0,于是f(0)=0是函数f(x)在(一1,1)内的最小值. 从而当一1<x<1时,f(x)≥f(0)=0,即 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/XRg4777K
0

随机试题
最新回复(0)