首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-07-12
65
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
-α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
-α
3
=β知
即γ
1
=(1,2,-1,0)
T
是Ax=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
也均是Ax=β的解,那么η
1
=γ
1
-γ
2
=(0,1,-2,-1)
T
,η
2
=γ
3
-γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关.于是Ax=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/XVJ4777K
0
考研数学三
相关试题推荐
设y(x)是由x2+xy+y=tan(x—y)确定的隐函数,且y(0)=0,则y”(0)=_______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
设f(x)在x=a处二阶可导,则等于().
证明:用二重积分证明
若二次型2x12+x22+x32+2x1x2+2tx2x3的秩为2,则t=___________.
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率:(Ⅰ)“第二人抽到票”的概率p1;(Ⅱ)“第二人才抽到票”的概率p2;(Ⅲ)“第一人宣布抽到了票,第二人又抽到票
(2002年)求极限
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
随机试题
作图分析垄断竞争厂商长期均衡状态。
数据库系统的主要作用是_______。
母乳喂养儿肠道主要的细菌是
幽门梗阻的典型特征是
朱镕基同志在2001年视察北京国家会计学院时,为北京国家会计学院题词的内容不包括( )。
货币市场基金是我国基金市场一类重要的产品类型,以“余额宝”为代表的货币市场基金近年来迅速发展,成为投资者现金管理的良好工具。但货币基金快速发展的同时,同样面临多方面的风险,如T+0赎回方式带来的流动性风险,期限错配问题带来的投资管理风险等。2016年12月
你今天的着装.根据着装学,我们觉得你这个人比较拘谨,你怎么解释?(2012年6月29日湖南省法检系统公务员面试真题)
下列关于编译系统对某高级语言进行翻译的叙述中,错误的是(10)。
重载的关系运算符和逻辑运算符的返回类型应当是_______。
Whatistherestaurantfamousfor?
最新回复
(
0
)