首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-07-12
96
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
-α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
-α
3
=β知
即γ
1
=(1,2,-1,0)
T
是Ax=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
也均是Ax=β的解,那么η
1
=γ
1
-γ
2
=(0,1,-2,-1)
T
,η
2
=γ
3
-γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关.于是Ax=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/XVJ4777K
0
考研数学三
相关试题推荐
(2017年)设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则A∪B与C相互独立的充要条件是()
(2001年)设随机变量X,Y的数学期望分别是-2和2,方差分别为1和4,而相关系数为-0.5。则根据切比雪夫不等式P{|X+Y|≥6}≤______。
设z=z(x,y)是由9x2—54xy+90y2—6yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设函数f(x)在x=1的某邻域内连续,且有(I)求f(1)及(Ⅱ)求f’(1),若又设f”(1)存在,求f”(1).
已知当x>0与y>0时则函数f(x,y)在点(x,y)=(1,1)处的全微分df|(1,1)=________.
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵A=(α1,α2,…,αs),B=(β1,β2,…,βt)证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
二阶微分方程y"+y=10e2x满足条件y(0)=0,y’(0)=1的特解是y=______.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=______.
设a>0,x1>0,且定义xn+1=(n=1,2,…),证明:存在并求其值.
求正交变换化二次型x12+x22+x32—4x1x2—4x2x3—4x1x3为标准形.
随机试题
指出能清虚热的药物
企业的财务弹性,取决于企业的资产结构和其权益结构。
货运代理,简称“货代”,是根据托运人的委托,为托运人提供服务的人,其本人并非承运人。()
证券公司办理集合资产管理业务,可以将集合资产管理计划资产投资于中国境内依法发行的股票、债券、证券投资基金、央行票据、短期融资券、资产支付证券、金融衍生产品以及中国证监会认可的其他投资品种。( )
固定资产明细账不必每年更换,可以连续使用。()
因欧盟大量限制进口印度软件,印度将这些软件大量转出口至我国,对我国软件产业造成损害威胁。根据对外贸易法律制度的规定,我国对此有权采取()。
根据《企业会计准则》中资产的定义,资产的特征包括()。
阅读以下说明和Java代码,回答问题[说明]任何一种程序都是为了解决问题而撰写的,解决问题时需要实现一些特定的运算法则。在策略(Strategy)模式下,可以更换实现算法的部分而不留痕迹,切换整个算法,简化改为采用其他方法来解决同样问题。
Whatdidthewomandolastwinter?
Empathy—theabilitytoappreciatethatastrangerstrugglingwithasuitcasenotonlyfindshissituation(1)_____butalsoneeds
最新回复
(
0
)