首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为fY|X(y|x)= (Ⅰ)求Y的密度函数; (Ⅱ)求X,Y的相关系数; (Ⅲ)令Z=X—Y,求Z的密度函数.
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为fY|X(y|x)= (Ⅰ)求Y的密度函数; (Ⅱ)求X,Y的相关系数; (Ⅲ)令Z=X—Y,求Z的密度函数.
admin
2014-11-26
58
问题
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为f
Y|X
(y|x)=
(Ⅰ)求Y的密度函数;
(Ⅱ)求X,Y的相关系数;
(Ⅲ)令Z=X—Y,求Z的密度函数.
选项
答案
(Ⅰ)随机变量X的边缘密度函数为f
x
(x)=[*]则(X,Y)的联合密度函数为f(x,y)=f
x
(x)f
Y|X
(y|x)=[*]则Y的边缘密度函数为f
Y
(y)=∫
-∞
+∞
f(x,y)dx.当y≤0或y≥4时,f
Y
(y)=0;当0<y<1时,f
Y
(y)=[*]当1≤y<4时,f
Y
(y)=[*]所以 [*] (Ⅲ)F
z
(z)=P{Z≤z}=P{X—Y≤z}=[*]当z<0时,F
z
(z)=0;当0≤z<1时,F
z
(z)=[*]当1≤z<4时,F
z
(z)=[*]当z≥4时,F
z
(z)=1. 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Xe54777K
0
考研数学一
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组Ax=b的通解是().
设A为m×n矩阵,E为m阶单位矩阵,则下列结论错误的是().
利用正交变换x=Qy,把二次型f(x1,x2,x3)=x12+x22+2x32+2x1x2化为标准形.
多项式的常数项是().
设A是n阶矩阵,则A相似于对角矩阵的充分必要条件是().
按两种不同积分次序化二重积分为二次积分,其中D为:(x一1)2+(y+1)2≤1所确定的闭区域.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:,常数λ>0.
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
设f(x)=ln|x|/|x-1|sinx,求f(x)的间断点并判断其类型.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)