首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= 求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设A= 求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
admin
2019-01-19
78
问题
设A=
求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
选项
答案
对增广矩阵(A:ξ
1
)作初等行变换,则 [*] 得Ax=0的基础解系(1,一1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
,故 ξ
2
=(0,0,1)
T
+k(1,一1,2)
T
,其中k为任意常数。 [*],对增广矩阵(A
2
:ξ
1
)作初等行变换,有 (A
2
:ξ
1
)=[*] 得A
2
x=0的基础解系(一1,1,0)
T
,(0,0,1)
T
和A
2
x=ξ
1
的特解([*],0,0)
T
。故 ξ
3
=([*],0,0)
T
+t
1
(一1,1,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/YBP4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1_不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记
求函数f(χ,y)=χy(a-χ-y)的极值.
求二元函数z=f(χ,y)=χ2y(4-χ-y)在由直线χ+y=6、χ轴和y轴所围成的闭区域D上的极值,最大值与最小值.
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T.(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
证明:(1)若随机变量X只取一个值a,则X与任一随机变量Y独立;(2)若随机变量X与自己独立,则存在C,使得P(X=C)=1.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设曲线L2:y=1一x2(0≤x≤1),x轴和y轴所围区域被曲线L2:y=kx2分成面积相等的两部分,其中常数k>0.(I)试求k的值;(Ⅱ)求(I)中k的值对应的曲线L2与曲线L1及x轴所围平面图形绕x轴旋转一周所得的旋转体的体积.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
随机试题
下列不属于COSO委员会提出的《内部控制——整合框架》中内部控制目标的是()。
根据1958年法国宪法的规定,负责对总统选举进行监督的机构是________。
简述骨筋膜室综合征的产生原因。
有关Koch三角区下述哪项不正确
国际工程出国工人的探亲假一年享受()。
年末被审计单位“应付工资”总账借方余额5万元,表示()。
统计数字表明,近年来,民用航空飞行的安全性有很大提高。例如,某国2008年每飞行100万次发生恶性事故的次数为0.2次,而1989年为1.4次。从这些年的统计数字看,民用航空恶性事故发生率总体呈下降趋势。由此看出,乘飞机出行越来越安全。以下哪项不能加强上
有二叉树如下图所示:则前序序列为()。
下列选项中,不属于模块间耦合的是()。
在宏的参数中,要引用窗体Fl上的Textl文本框的值,应该使用的表达式是
最新回复
(
0
)