首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量. (1)求A的特征值; (2)求矩阵A.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量. (1)求A的特征值; (2)求矩阵A.
admin
2017-12-31
51
问题
设A是三阶实对称矩阵,r(A)=1,A
2
-3A=O,设(1,1,-1)
T
为A的非零特征值对应的特征向量.
(1)求A的特征值; (2)求矩阵A.
选项
答案
(1)A
2
-3A=O[*]|A||3E-A|=0[*]λ=0,3,因为r(A)=1,所以λ
1
=3,λ
2
=λ
3
=0. (2)设特征值0对应的特征向量为(x
1
,x
2
,x
3
)
T
,则x
1
+x
2
-x
3
=0,则0对应的特征向量为α
2
=(-1,1,0)
T
,α
3
=(1,0,1)
T
,令 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YXX4777K
0
考研数学三
相关试题推荐
设h(t)为三阶可导函数,u=h(xyz),h(1)=f"xy(0,0),h’(1)=f"yx(0,0),且满足=x2y2z2h"’(xyz),求u的表达式,其中
求微分方程的通解.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加到第2列得C,记,则【】
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.(Ⅰ)求α的值;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表示
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且求该方程组的通解.
随机试题
A.腺淋巴瘤B.阻塞性腮腺炎C.舍格伦综合征D.结核E.儿童复发性腮腺炎符合下列腮腺造影表现的病变是主导管形态正常,分支导管数目较少,末梢导管点状扩张,8年后复查末梢导管点状扩张完全消失
劳神过度易损伤的脏腑是
建设项目竣工验收时,在正常情况下的验收范围是()。
项目的运营负荷如何确定?
工程项目的控制性施工进度计划是指()。
下列各项资产中,无论是否存在减值迹象,每年年末均应进行资产减值测试的是()。
基础教育课程改革倡导一种新型的教师观,这种教师观是()。
“学习过程就是尝试错误的过程”,这一观点属于哪种学习理论?()
辩证思维方法“由抽象上升到具体”,是指()
PicnicintheDining-Room"Weshallbehavingapicnictomorrowafternoon,"saidmyhostess,Mrs.Brown."Itwillbequite
最新回复
(
0
)