首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
admin
2018-04-15
29
问题
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
选项
答案
指数分布的分布函数与区间[0,1]上均匀分布的分布函数分别为 [*] 设Y=G(X)的分布函数为H(X),对于分布函数G(x)易见,当y<0时, H(y)=P{Y≤y} =P{G(X)≤y}=0; 当y≥1时,H(y)=P{Y≤y}=P{G(X)≤y}=1; 当0≤y<1时,H(y)=P{Y≤y}=P{G(X)≤y}=P{X≤y}=1一e
-λy
. 于是,Y=G(X)的分布函数 [*] 因此,Y=G(X)的分布函数不是区间[0,1]上的均匀分布函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YYr4777K
0
考研数学一
相关试题推荐
设,则有
设X1,X2,X3,X4是取自正态总体N(0,4)的简单随机样本,令Y=5(X1-2X2)2+(3X3-4X4)2,求P(Y≤2)。
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时,在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去,已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
设随机变量X,Y相互独立,且分别服从参数为λ和μ的指数分布(μ,λ)(μ>0,λ>0),则P(X>Y)等于()。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。证明α1,α2,…,αn线性无关;
设X和Y为独立的随机变量,X在区间[0,1]上服从均匀分布,Y的概率密度函数为求随机变量Z=X+Y的分布函数Fz(z)。
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n,则四阶行列式|α3,α2,α1,β1+β2|等于()。
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=()。
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0.试证明至少存在一点ξ∈(a,b),使
细菌的增长率与总数成正比,如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
随机试题
试述《老人与海》的象征意义。
某10000只雏鸡群,18日龄时发病,迅速传及全群。病鸡伸颈张口呼吸,喷嚏,流鼻液,咳嗽。剖检发现气管、支气管和鼻腔内有浆液性、卡他性或干酪样分泌物,喉头和气管黏膜潮红、水肿,但无明显出血。常用于紧急接种的疫苗毒株是()。
手阳明大肠经的主治特点是
A.保留时间B.峰面积C.峰宽D.半高峰宽E.标准差用高效液相色谱法测定药物含量时应选用的色谱参数是()。
甲受乙的委托,为乙画了一幅肖像。双方未就这幅画的版权归属作出约定。乙去世后,其继承人丙将这幅画卖给丁。丁未经任何人同意,将这幅画复制出售。对丁的这一行为应当如何认定?()
《安全生产法》所称的生产经营单位,是指从事各类生产经营活动的()。
以下投资工具中,不属于固定收益投资工具的是()。
阜南的能力层次结构理论将能力分成()
关于大型信息系统特征的描述,不正确的是()。
Youwillhearfiveshortrecordingsofvoicemails.Foreachrecording,decidewhateachspeakeristryingtodo.Write
最新回复
(
0
)