首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-07-19
45
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0
l
2
:ax+2cy+3a=0
l
3
:ax+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性 设三直线l
1
,l
2
,l
3
交于一点,则二元线性方程组 [*] =3(a+b+c)[(a—b)
2
一(b—c)
2
+(c—a)
2
] 及 (a—b)
2
+(b—c)(c—a)
2
≠0, (否则a=b=c,则三条直线重合,从而有无穷多个交点,与交点惟一矛盾),所以a+b+c=0. 充分性 若a+b+c=0,则由必要性的证明知[*],又系数矩阵A中有一个二阶于式 [*] 故秩(A)=2,于是有秩(A)=秩(A)=2,因此方程组(*)有惟一解,即三直线l
1
,l
2
,l
3
交于一点.@注释@本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
解析
本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
转载请注明原文地址:https://kaotiyun.com/show/Yjc4777K
0
考研数学一
相关试题推荐
下面连续可微的向量函数{P(x,y),Q(x,y)}在指定的区域D上是否有原函数u(x,y)(du=Pdx+Qdy或gradu={P,Q}).若有,求出原函数.{P,Q}=,D={(x,y)|y>一x}.
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L—ysinx2dx+xcosy2dy<.
计算下列反常积分(广义积分)的值:
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
证明(α,β,γ)2≤α2β2γ2,并且等号成立的充要条件是α,β,γ两两垂直或者α,β,γ中有零向量.
(Ⅰ)经过点P(1,2,一1)并且与直线L:,垂直的平面∏1的方程是____________;(Ⅱ)经过点P及直线L的平面∏2的方程是____________.
设向量组α,β,γ线性无关,α,β,γ线性相关,则
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=O的三个线性无关的解向量,则()为AX=O的基础解系.
二次型f=χTAχ经过满秩线性变换χ=Py可化为二次型yTBy,则矩阵A与B()
随机试题
在酸碱质子理论中,可作为酸的物质是()。
下列对数据库事务的描述中错误的是_______。
下列哪项不是破伤风的常见症状
【背景资料】某大桥,其主墩基础有40根桩径为1.55m的钻孔灌注桩,实际成孔深度达50m。桥位区地质为:表层为5cm的砾石,以下为37cm的卵漂石层,再以下为软岩层。承包商采用下列施工方法进行施工:(1)场地平整,桩位放样,埋设护筒之后
下列关于投资性房地产核算的表述中,正确的是()。
张某、李莱、陈某和胡某分别是云天公司的执行董事、监事、经理和最大的股东,根据《会计法》的规定,( )应当对云天公司的会计工作和会计资料的真实性和完整性负责。
纳税单位与免税单位共同使用、共同使用权土地下的多层建筑,对纳税单位可按其占用的建筑面积占建筑总面积的比例计征城镇土地使用税。()
在物业经营管理活动中,不论是哪种类型的合同,其构成要素包括()。
某项目小组在定义项目的工作构成时设计了一份材料清单来代替工作分解结构(WBS),客户在对材料清单进行评审时发现其中缺少一项会导致范围变更的需求,后来这一变更需求被补充了进去。造成这一次范围变更的主要原因是______。
They(forbid)______fromenteringthenewbuildingbecausetheymadesuchadamageintheoldone.
最新回复
(
0
)