首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-07-19
30
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0
l
2
:ax+2cy+3a=0
l
3
:ax+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性 设三直线l
1
,l
2
,l
3
交于一点,则二元线性方程组 [*] =3(a+b+c)[(a—b)
2
一(b—c)
2
+(c—a)
2
] 及 (a—b)
2
+(b—c)(c—a)
2
≠0, (否则a=b=c,则三条直线重合,从而有无穷多个交点,与交点惟一矛盾),所以a+b+c=0. 充分性 若a+b+c=0,则由必要性的证明知[*],又系数矩阵A中有一个二阶于式 [*] 故秩(A)=2,于是有秩(A)=秩(A)=2,因此方程组(*)有惟一解,即三直线l
1
,l
2
,l
3
交于一点.@注释@本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
解析
本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
转载请注明原文地址:https://kaotiyun.com/show/Yjc4777K
0
考研数学一
相关试题推荐
求下列变限积分函数的导数:(Ⅰ)F(x)=∫2xln(x+1)etdt,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=∫1x[f(u)du]dt,求F"(x)(一∞<x<+∞).
设Pdx+Qdy=,求u(x,y),使du=Pdx+Qdy.
求下列曲线的曲率或曲率半径:(Ⅰ)求y=lnx在点(1,0)处的曲率半径.(Ⅱ)求x=t—ln(1+t2),y=arctant在t=2处的曲率.
设有二阶线性微分方程(1一x2)+y=2x(Ⅰ)作自变量替换x=sint(—),把方程变换成y关于t的微分方程.(Ⅱ)求原方程的通解.
证明函数恒等式arctanx=,x∈(一1,1).
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是来自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
设z=f(x,y)=,则f(x,y)在点(0,0)处
设X1,X2,…,Xn是取自正态总体N(0,σ2)的简单随机样本,与S2分别是样本均值与样本方差,则()
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
随机试题
他对工作采取积极的态度,无论做什么总是全力以赴。
A/丙烯酸树脂B/淀粉浆C/硬脂酸镁D/羧甲基淀粉钠E/乙醇可用作黏合剂的是
治疗高血压危重症的首选降压药物是()
A、铝碳酸镁片B、胰酶肠溶胶囊C、甲硝唑片D、活菌制剂E、高锰酸钾片建议患者嚼碎后服用,有利于增加药物吸收的是()。
某施工单位在居民区内承建一施工项目,下列有关于该施工项目的说法正确的是()。【2005年考试真题】
按技术等级划分,我国导游员分为临时导游员、初级导游员、中级导游员、高级导游员和特级导游员。()
下列有关生活中节约用电的说法,错误的是:
为了判别LOCATE或CONTINUE命令是否找到了满足条件的记录,可以使用函数______。
以下程序用来统计文件中字符的个数(函数feof用以检查文件是否结束,结束时返回非零)#includemain(){FILE*fp;longnum=0;fp=fopen("fname.dat","r");w
(a)运用已裁决案例解释“判决理由”及“附带意见”。(b)解释下列情形的背景:(1)枢密院司法委员会受贵族院先前裁决的约束。(2)上诉法院可以偏离其先前裁决。(1992年6月)
最新回复
(
0
)