首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
admin
2019-12-26
64
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
选项
答案
当a=0时, [*] 可知A的特征值为λ
1
=λ
2
=2,λ
3
=0. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得A的属于λ
1
=λ
2
=2的线性无关的特征向量为 ξ
1
=(1,1,0)
T
,ξ
2
=(0,0,1)
T
. 对于λ
3
=0,解齐次线性方程组(-A)x=0,得A的属于λ
3
=0的线性无关的特征向量为 ξ
3
=(-1,1,0)
T
. 易见ξ
1
,ξ
2
,ξ
3
,两两正交,只需单位化,得 [*] 于是 [*] 则Q为正交矩阵.在正交变换x=Qy下,二次型的标准形为 f=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZPD4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
我们常假设某种型号的电子元件的寿命X服从指数分布,其密度为其中λ>0是一个常数.在某些情况,严格地说λ是一个随机变量,记为Λ(例如元件选自一个很大的群体,这个群体的各个成员具有不同的工作特性).此时我们假设X的条件概率密度为现设Λ的概率密度为试
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=______.
设A=已知方程组Ax=b有无穷多解,求a的值并求其通解.
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为__________.
求方程组的通解.
若在x=一3处为条件收敛,则其收敛半径R=________.
随机试题
通过不断强化逐渐趋近目标的反应,来形成某种较复杂的行为称为()。
图中交通警察的手势为什么信号?
外阴上皮内瘤变最有可能的病因为
露天矿山的辅助生产环节不包括()。
对于一手个人住房贷款而言,较为普遍的贷款营销方式是银行与房地产开发商合作的方式,这种合作方式是指房地产开发商与贷款银行共同签订“商品房销售贷款合作协议”,由银行向购买该开发商房屋的购房者提供个人住房贷款,借款人用所购房屋作抵押,在借款人购买的房屋没有办好抵
现行的增值税实行的是价内税,因此产品成本中包括外购投入物所支付的进项税。()
动机产生的内在条件是()。
好意施惠是指当事人之间无意设定法律上的权利义务关系,而由当事人一方基于良好的道德风尚实施的使另一方受恩惠的关系。根据上述定义,下列不属于好意施惠关系的是:
基于以下题干:陈教授:中世纪初欧洲与东亚之间没有贸易往来,因为在现存的档案中找不到这方面的任何文字记录。李研究员:您的论证与这样一个论证类似:传说中的喜马拉雅雪人是不存在的,因为从来没有人作证亲眼看到这种雪人。这一论证的问题在于:有人看
在下列选项中属于Java语言的代码安全检测机制的是()。
最新回复
(
0
)