首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.
admin
2017-06-14
66
问题
已知3阶矩阵A与3维列向量α,若α,Aα,A
2
α线性无关,且A
3
α=3Aα-2A
2
α,试求矩阵A的特征值与特征向量.
选项
答案
由于A
3
α+2A
2
α-3Aα=0,有 A(A
2
α+2Aα-3α)=0=0(A
2
α+2Aα-3α). 因为α,Aα,A
2
α线性无关,故必有A
2
α+2Aα-3α≠0,所以λ=0是A的特征值, A
2
α+2Aα-3α是矩阵A属于特征值λ=0的特征向量. 类似地,由A
3
α+2A
2
α-3Aα=0,有 (A—E)(A
2
α+3Aα)=0=0(A
2
α+3Aα), (A+3E)(A
2
α—Aα)=0=0(A
2
α—Aα). 所以,λ=1是A的特征值,A
2
α+3Aα是属于λ=1的特征向量;λ=-3是A的特征值, A
2
α—Aα是属于λ=-3的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZZu4777K
0
考研数学一
相关试题推荐
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
(2000年试题,一)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_____________.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
随机试题
1989年,被外交部定为国家使节性礼品及省、市地区接待出访礼品的是()。
护理程序输入的可以是
下列哪种分析方法是从经济学、金融学、财务管理学及投资学等基本原理推导出的?( )
下列原则中,不属于国际税收基本原则的是()。
某物流公司2011年1月经营情况如下:(1)提供国内货物运输及装卸服务,取得运输收入35万元,装卸收入4万元,支付装卸工人工资1万元。(2)承揽国际货物运输业务,取得运输收入48万元,支付境外承运单位运费16万元。(3)运营业务中取得货物整理收入9万
“工业革命不能仅仅归因于一小群发明者的天才。天才无疑起了一定的作用,然而,更重要的是18世纪后期起作用的种种有利的力量的结合。”这里的“种种有利的力量”应该包括()。①代议制立宪政体的确立②资本主义经济发展③机器工厂
(2013年真题)根据我国物权法规定,土地承包经营权的取得时间是()。
在分页存储管理系统中出现页面的频繁调入调出的现象称为______。
Themostexcitingkindofeducationisalsothemost.Nothingcan【C1】______thejoyofdiscoveringforyourselfsomethingthatis
A______examinationforthepostofdepartmentmanagerwillbeheldnextTuesday.
最新回复
(
0
)