首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关。 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关。 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示。
admin
2021-11-25
56
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关。
证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示。
选项
答案
因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0 或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
,l
1
,l
2
都不全为零,所以γ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ziy4777K
0
考研数学二
相关试题推荐
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设有三个线性无关的特征向量,求a及An.
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,Β,使得A=aΒT.
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
星形线x=acos3t,y=asin3t所围图形的面积为__________。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;
随机试题
在用锤子敲击拆装工件时,楃持点至木柄尾端宜流出()mm。
A.枇杷清肺饮B.黄连解毒汤C.茵陈蒿汤D.海藻玉壶汤E.清胃散
制订环境卫生标准时,首先要考虑
性成熟期一般自
A.药物的吸收B.药物的分布C.药物的生物转化D.药物的排泄E.药物的消除药物从给药部位转运进入血液循环的过程是
桥梁承载结构的施工方法中,()是中等跨径预应力混凝土连续梁中的一种施工方法,它使用一套设备从桥梁的一端逐步施工,直到对岸。
定价基准日前20个交易日股票交易均价一定价基准日前20个交易日股票交易总额/定价基准日前20个交易日股票交易总量。()
注意的品质包括()
A、 B、 C、 D、 E、 C
NationalSpellingBeeEveryyear,thebestyoung【T1】______fromaroundtheworld【T2】______inWashington,D.C.fortheNatio
最新回复
(
0
)