首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关。 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关。 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示。
admin
2021-11-25
76
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关。
证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示。
选项
答案
因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0 或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
,l
1
,l
2
都不全为零,所以γ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ziy4777K
0
考研数学二
相关试题推荐
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求|A*+2E|.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵。
在空间直角坐标系的原点处,有一质量为M1的恒星,另有一质量为M2的恒星在椭圆上移动,问两恒星间万有引力大小何时最大,何时最小。
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
设α1,α2为开次线性万程组AX=0的基石出解糸,β1,β2为非开次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
极限的充要条件是()
随机试题
阅读以下文字,回答下列问题。要处理好改革发展稳定的关系。坚持改革力度、发展速度和社会可承受度的统一,是我国改革开放和现代化事业之所以能够顺利推进的宝贵经验。_____。“天时不如地利,地利不如人和。”要打好改革攻坚战,就要在改革方案酝酿之初充分考虑相关方
PASSAGETWOWhomdoestheword"counterparts"(Para.5)referto?
在胀加焊的结构中,自熔式焊接是指________的焊接。
下列关于输血的适应证中,不正确的是
如字迹模糊不清时,正确的是
敌鼠中毒特效解毒药为()。
下列关于政府补助的说法,错误的是()。
A、Theywillbewhitewashedsoon.B、Nothinghasbeensaidaboutthemintheelection.C、Therewillbeaspecificprogramtoupgra
Thereasonthatwaterproblemwillbecomemoreandmoreseriousis______.Thewords"priorto"(para.2)probablymean"______"
A、Atthereceptiondeskinahotel.B、Inabusterminal.C、Inarestaurant.D、Inahotelroom.D
最新回复
(
0
)