首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
admin
2019-09-04
82
问题
设f(x)连续,且F(x)=∫
0
x
(x-2t)f(t)dt.证明:
(1)若f(x)是偶函数,则F(x)为偶函数;
(2)若f(x)单调不增,则F(x)单调不减.
选项
答案
(1)设f(-x)=f(x), 因为F(-x)=∫
0
-x
(-x-2t)f(t)dt[*]∫
0
x
(-x+2u)f(-u)(-du) =∫
0
x
(x-2u)f(u)du=F(x), 所以F(x)为偶函数. (2)F(x)=∫
0
x
(x-2t)f(t)dt=x∫
0
x
f(t)dt-2∫
0
x
tf(t)dt, F’(x)=∫
0
x
f(t)dt-xf(x)=x[f(ξ)-f(x)],其中ξ介于0与x之间, 当x<0时,x≤ξ≤0,因为f(x)单调不增,所以F’(x)≥0, 当x≥0时,0≤ξ≤x,因为f(x)单调不增,所以F’(x)≥0, 从而F(x)单调不减.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZsD4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设二维随机变量(X,Y)的概率密度为则随机变量U=X+2Y,V=一X的协方差Cov(U,V)=______.
设从均值为μ,方差为σ2(>0)的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为.证明对于任何满足条件a+b=1的常数a,b,都有ET=μ,其中T=,并确定常数a,b,使得方差DT达到最小.
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为αs=α1+2α2+3α3+…+(s一1)αs-1(1)证明齐次线性方程组α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0(
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈使得f’(ξ)=
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设当事件A与B同时发生时,事件C必发生,则()
设f(x)在[a,b]连续,则f(x)在[a,b]非负且在[a,b]的任意子区间上不恒为零是F(x)=∫axf(t)dt在[a,b]单调增加的()
设且|A|=m,则|B|=()
设D=,则A31+A32+A33=________.
随机试题
作为国际政治基本行为主体的主权国家必须具备的基本要素有______、______、______、______。
自我管理包括哪些内容?
《我愿是一条急流》一诗的独特艺术手法是
Sally’sscoreontheexamisthelowestintheclass.She______hard.
某肉鸡场35日龄鸡发病,病鸡表现精神沉郁、羽毛松乱,死亡病鸡的肉眼病变主要有纤维素性心包炎、纤维素性肝周炎和纤维素性气囊炎。使用抗菌素治疗后效果良好。该病最可能是
对资产负债表中流动资产和流动负债进行比较,可以反映企业的长期偿债能力。()
抢劫罪:是指非法占有为目的,以暴力、胁迫或者其他方法,强行劫取公私财物的行为。根据上述定义,下列行为属于抢劫罪的是()。
“不登高山。不知天之高也;不临深渊,不知地之厚也。”这说明
Justhowdoesapersonarriveatanideaofthekindofpersonthatheis?Hedevelopsthis(1)_____ofselfthroughagraduala
JeniseHoke
最新回复
(
0
)