首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
admin
2019-09-04
65
问题
设f(x)连续,且F(x)=∫
0
x
(x-2t)f(t)dt.证明:
(1)若f(x)是偶函数,则F(x)为偶函数;
(2)若f(x)单调不增,则F(x)单调不减.
选项
答案
(1)设f(-x)=f(x), 因为F(-x)=∫
0
-x
(-x-2t)f(t)dt[*]∫
0
x
(-x+2u)f(-u)(-du) =∫
0
x
(x-2u)f(u)du=F(x), 所以F(x)为偶函数. (2)F(x)=∫
0
x
(x-2t)f(t)dt=x∫
0
x
f(t)dt-2∫
0
x
tf(t)dt, F’(x)=∫
0
x
f(t)dt-xf(x)=x[f(ξ)-f(x)],其中ξ介于0与x之间, 当x<0时,x≤ξ≤0,因为f(x)单调不增,所以F’(x)≥0, 当x≥0时,0≤ξ≤x,因为f(x)单调不增,所以F’(x)≥0, 从而F(x)单调不减.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZsD4777K
0
考研数学三
相关试题推荐
设h(t)为三阶可导函数,u=h(xyz),h(1)=fxy"(0,0),h’(1)=fyx"(0,0),且满足求u的表达式,其中
设B=2A-E.证明:B2=E的充分必要条件是A2=A.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)当a为何值时,向量组α1,α2,α2,α4线性相关;(2)当a为何值时,向量组α1,α2,α3,α4
设a0=0,a1=1,an+1=3an+4an+1(n=1,2,…).(1)令(2)求幂级数的收敛半径、收敛区间、收敛域及和函数.
设xn(1一x)ndx,n=1,2,3,….证明级数收敛,并求其和.
设(1)计算A2,并将A2用A和E表出;(2)证明:当k>2时,Ak=O的充分必要条件为A2=O.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为一12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设一次试验中,出现事件A的概率为p,则n次试验中A至少发生一次的概率为__________,A至多发生一次的概率为_________.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为υ0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
随机试题
试述马克思主义关于人的全面发展学说的基本观点。
关于消防给水阀门的维护管理,每天对水源控制阀进行外观检查,并应保证系统处于无故障状态。()
装夹成形车刀时,其主切削刃应()。
"Upanddown"is______asrhetoricalcolouring.()
A.鼻腔前部出血B.鼻腔上部出血C.鼻腔后部出血D.鼻腔黏膜弥漫出血E.鼻窦出血儿童和青年易出血的部位为
以下选项中,最易泛油的饮片是()。
下列关于土壤和土地的表述,错误的是()。
需要业主派咨询工程师到制造现场进行监督检查的是()。
()是指强迫犯罪的外国人离开中国国(边)境的刑罚方法。
(2011广东80)一项调查结果显示,即使普通人的后代与成功人士的后代同样地努力,其成功的几率也仅为后者的一半。由此可以得出结论,成功与否主要取决于遗传因素。下列最能反驳上述结论的是:
最新回复
(
0
)