首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=∫abf(x)dx,试证:存在一点ξ∈(a,b),使得f"(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=∫abf(x)dx,试证:存在一点ξ∈(a,b),使得f"(ξ)=0.
admin
2017-07-26
23
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=
∫
a
b
f(x)dx,试证:存在一点ξ∈(a,b),使得f"(ξ)=0.
选项
答案
作辅助函数F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导.由拉格朗日定理可知,存在点η∈(a,b),使得F’(η)=[*],即 f(η)=[*]∫
a
b
f(x)dx=f(a)=f(b). 于是,在区间[a,η]和[η,b]上分别应用洛尔定理,可知存在点ξ
1
∈(a,η),ξ
2
∈(η,b),使得f(ξ
1
)=f(ξ
2
)=0.再对f’(x)在[ξ
1
,ξ
2
]上应用洛尔定理,可知存在点ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f"(ξ)=0.
解析
由洛尔定理可知:要证存在一点ξ∈(a,b),使得f"(ξ)=0,
对F(x)=∫
a
x
f(t)dt由拉格朗日定理便可找到这样的点η.
转载请注明原文地址:https://kaotiyun.com/show/ZuH4777K
0
考研数学三
相关试题推荐
[*]
设n阶矩阵A与B等价,则必有().
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
随机试题
当冷却塔与周围女儿墙的间距不能满足设备技术要求时。女儿墙的设计应采取以下哪种主要措施?[2009年第84题]
智能化系统的电动调节阀安装前,应检查的内容有()。
A、$40.B、$30.C、$20.D、$10.C
教学评价能调动师生的积极性和创造性,提高学生的学习兴趣,这体现了教学评价的()。
义字成为记录文化的有效工具是从意音文字开始的。美索不达米亚的钉头字、埃及的圣书字、中美洲的玛雅字、中国汉字等都是意音文字。_________。现在,绝大部分著名的意音文字都成为历史陈迹了,只有汉字,作为意音文字在今天的世界上巍然独存。填入划横线部分最恰当的
研究人员发现,如果手机处在视线内或者容易触及的地方,人的注意力会下降,完成任务时表现也会更差,因为大脑会忙着应付一件事:不要拿起手机。沃德称:“即使智能手机只是存在于那里,也足以削弱人的感知能力。”最不能支持上述结论的是()。
设A为三阶矩阵,且|A|=4,则|(A*/2)-1|=________.
It’sgenerallyacceptedthatthereisacorrelationbetweenachild’seducationalattainmentandafamily’spovertylevel,butn
A、Howtoattachfilestoemails.B、HowtogetaccesstotheInternet.C、HowtousetheInternetmoreefficiently.D、Howtoinsta
Becausesomanypeopleintheirteensandearly20sareincreasinglysocializing—accessibletoeachothereveryminuteoftheda
最新回复
(
0
)