首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,。证明
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,。证明
admin
2019-01-15
159
问题
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,
。证明
选项
答案
设[*],因为f(0)=f(1)=0,则f(c)是f(x)在区间(0,1)内的极小值,f
’
(c)=0,将f(x)按(x-c)的幂展开二次泰勒多项式,即 [*] 在上式中分别令x=0,x=1,得 [*] 若[*],则[*], 若[*],则[*]。 故[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/aEP4777K
0
考研数学三
相关试题推荐
(90年)已知f(χ)在χ=0某邻域内连续,且f(0)=0,=2,则在点χ=0处f(χ)
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
(87年)下列函数在其定义域内连续的是【】
(12年)设连续函数z=f(χ,y)满足=0,则dz|(0,1)=_______.
(02年)设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(07年)设矩阵A=,则A3的秩为_______.
(08年)设A=则在实数域上与A合同的矩阵为【】
(02年)设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是【】
已知平面上三条不同直线的方程分别为l1:aχ+2by+3c=0l2:bχ+2cy+3a=0l3:cχ+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
随机试题
患者,男,68岁。突起剧烈压榨样胸痛、呕吐伴窒息感2小时入院。查心率110次/分,血压85/60mmHg,心电图示V1~V4导联ST段呈弓背向上抬高,律不齐。若发生了室颤,护士采取的处理措施正确的是
造成患者死亡、重度残疾的医疗事故属于
下列选项中,热粘法铺贴卷材应符合()等规定。
承包工程价款可以实行按月预支工程款的工程结算方式的有( )。
市场机制作用得到充分发挥的前提是()。
在编制项目沟通计划的过程中,对项目干系人分析的目的不包括()。
Minipresentation’-about6minutesInthispartofthetestyouareaskedtogiveashorttalkonabusinesstopic,Youhavet
It’sallannualback-to-schoolroutine.Onemorningyouwavegoodbye,andthat【C1】______eveningyou’reburningthelate-nightoi
Whatheis______isneithermoneynorfame,butthesatisfactionofseeinghisstudentsgrowupasbuildersofsocialism.
19Smokingwilldoharm______yourhealth.
最新回复
(
0
)