首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某地在任何长为t的时间间隔内发生地震的次数X服从参数为λt的泊松分布,时间以周计,λ>0,(1)设T为两次地震之间的间隔时间,求T的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续8周无地震的条件下,在未来7周内仍无地震的概率.
设某地在任何长为t的时间间隔内发生地震的次数X服从参数为λt的泊松分布,时间以周计,λ>0,(1)设T为两次地震之间的间隔时间,求T的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续8周无地震的条件下,在未来7周内仍无地震的概率.
admin
2016-01-11
66
问题
设某地在任何长为t的时间间隔内发生地震的次数X服从参数为λt的泊松分布,时间以周计,λ>0,(1)设T为两次地震之间的间隔时间,求T的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续8周无地震的条件下,在未来7周内仍无地震的概率.
选项
答案
(1)由已知条件,X服从参数为λt的泊松分布,其概率分布为 P{X=k}=[*],k=0,1,2,…. 设T的分布函数为F
T
(t)=P{T≤t},t≥0. 当t<0时,F
T
(t)=0; 当t≥0时,在一次地震后的时间t内无地震的事件可表示为P{T>t}=P{X=0}=e
-λt
,T的分布函数F
T
(t)=P{T≤t}=1—P{T>t)}=1—e
-λt
,综上, [*] (3)所求概率为P{T≥15|T>8}=P{T≥7}=1-P{T<7}=e
-7λ
. 注:指数分布的无记忆性:如果X服从参数为λ的指数分布,则对于任意实数s,t>0,有P{T>s+t|T>s}=P{T>t}.
解析
主要考查指数分布及其无记忆性.可由T的分布函数的定义式P{T≤t}着手.求T的分布函数的实质是计算事件{T≤t}的概率,关键是找到发生地震的次数X与T的联系.
转载请注明原文地址:https://kaotiyun.com/show/aY34777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,且ex[1+x+f(x)]存在,则曲线y=f(x)有斜渐近线()
设A,B均是n阶方阵,已知A-E可逆,|B|=1,且(A-E)-1=B*-E,其中B*为B的伴随矩阵.则A-1=________.
设矩阵满足CTAC=B.对上题中的A,求可逆矩阵P,使得PTBP=A.
设总体X的概率密度为f(x;α,β)=,其中α,β是未知参数.利用总体X的如下样本值:一0.5,0.3,一0.2,一0.6,一0.1,0.4,0.5,一0.8,求α的矩估计值与最大似然估计值.
设f’(x)在区间[0,4]上连续,曲线y=f’(x)与直线x=0,x=4,y=0围成如图所示的三个区域,其面积分别为S1=3,S2=4,S3=2,且f(0)=1,则f(x)在[0,4]上的最大值与最小值分别为()。
计算I=∮Lxydx+z2dy+xzdz,其中L为锥面z=与柱面x2+y2=2ax(a>0)的交线,从z轴正向看为逆时针方向.
计算曲线积分I=∮L(y2-z2)dx+(2z2-x2)dy+(3x2-y2)dz,其中L是平面x+y+z=2与柱面|x|+|y|=1的交线,若从Z轴的正向看L,为逆时针方向.
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值。
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
设,其周长记为a,求
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)