首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式
admin
2017-05-31
39
问题
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫
L
2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫
(0,0)
(t,1)
2xydx+Q(x,y)dy=∫
(0,0)
(1,t)
2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式.
选项
答案
由“曲线积分与路径无关的充分必要条件”知[*] 于是Q(x,y)=x
2
+c(y),其中c(y)为待定的函数.又由于等式中的左边=∫
(0,0)
(t,1)
2xydx+ Q(x,y)dy=∫
0
1
[t
2
+c(y)]dy=t
2
+∫
0
1
c(y)dy ; 右边=∫
(0,0)
(1,t)
2xydx+ Q(x,y)dy=∫
0
t
[1+c(y)]dy=t+∫
0
t
c(y)dy. 由题设知t
2
+∫
0
t
c(y)dy.两边同时对变量t求导,得2t=1+c(t),即c(t)=2t一1,从而c(y)=2y一1.于是,Q(x,y)=x
2
+2y一1.
解析
这实际上是曲线积分的一个逆问题.
转载请注明原文地址:https://kaotiyun.com/show/aiu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 B
A、 B、 C、 D、 D
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(f(1))处的切线斜率为().
若矩阵A=相似于对角矩阵Λ,试确定常数口的值,并求可逆矩阵P使P-1AP=Λ.
极限=_________.
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设函数f(x)在(0,+∞)内可导,f(x)>0,,且(Ⅰ)求f(x);(Ⅱ)求证:f(x)在(0,+∞)上有界.
随机试题
垄断资本是怎样利用国家来为其经济利益服务的?
A.妊娠满28周后,胎儿及附属物全部从母体排出B.孕满28周至不满37周娩出者C.孕满42周及以后分娩者D.孕满37周而不满42周分娩者E.孕不满28周,胎儿不足1000g而娩出者
划分委托监理合同包的工作范围时,通常考虑的因素包括( )。
课堂教学、科学研究与社会实践是高校培养合格人才的三个基本途径。()
道德修养与社会实践密切相连。一个人只有在日常生活中,即在与别人、与集体发生的各种关系中,才较清楚地认识到自己的行为哪些是道德的,哪些是不道德的。同样,克服不道德的思想和行为,也只有在社会实践中才能实现。这段文字意在说明()。
根据以下资料,回答下列问题。2017年我国成年国民图书阅读率为59.1%,比上年增加0.3个百分点;报纸阅读率为37.6%,比上年降低2.1个百分点;期刊阅读率为25.3%,比上年增加1个百分点。2017年我国成年
婴儿主要的思维形式是
张教授:莎士比亚名下的戏剧和诗歌,其实不是他写的,而是伊丽莎白一世写的。莎士比亚是个没有受过多少教育的乡下人,而伊丽莎白一世则完全具有完成这些天才作品的知识和教养。李研究员:你的断定是不能成立的。因为如果伊丽莎白写了像《哈姆雷特》这样的名剧的话,她早
READINGPASSAGE1Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below. Cleaner
A、Wecanonlyovercomedifficultieswithfriends’help.B、Ourbreathingwillbedeepandregular.C、Ourstresslevelswillrise.
最新回复
(
0
)