首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式
admin
2017-05-31
53
问题
设函数Q(x,y)在xOy平面上具有一阶连续的偏导数,曲线积分∫
L
2xydx+Q(x,y)dy与路径无关,并且对任意的t恒有∫
(0,0)
(t,1)
2xydx+Q(x,y)dy=∫
(0,0)
(1,t)
2xydx+Q(x,y)dy. 求函数Q(x,y)的表达式.
选项
答案
由“曲线积分与路径无关的充分必要条件”知[*] 于是Q(x,y)=x
2
+c(y),其中c(y)为待定的函数.又由于等式中的左边=∫
(0,0)
(t,1)
2xydx+ Q(x,y)dy=∫
0
1
[t
2
+c(y)]dy=t
2
+∫
0
1
c(y)dy ; 右边=∫
(0,0)
(1,t)
2xydx+ Q(x,y)dy=∫
0
t
[1+c(y)]dy=t+∫
0
t
c(y)dy. 由题设知t
2
+∫
0
t
c(y)dy.两边同时对变量t求导,得2t=1+c(t),即c(t)=2t一1,从而c(y)=2y一1.于是,Q(x,y)=x
2
+2y一1.
解析
这实际上是曲线积分的一个逆问题.
转载请注明原文地址:https://kaotiyun.com/show/aiu4777K
0
考研数学一
相关试题推荐
[*]
设f(x)是奇函数,f(1)=a,且f(x+2)-f(x)=f(2).(1)试用a表示,f(2)与f(5);(2)问a取何值时,f(x)以2为周期.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱仪装有3件合格品.从甲箱中任取3件产品放入乙箱后,乙箱中次品件数X的数学期望=__________;(2)从乙箱中任一件产品是次品的概率=_____________.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且,f+’+(a)>0,证明:存在ξ∈(a,b),使得f’’(a)<0.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=________.
求曲面x2+(y一1)2=1介于xOy平面与曲面(x2+y2)之间的部分的面积.
设Ω是由曲面x2+y2一z2=0与平面z=2围成的空间区域,则的值是________.
(2008年试题,15)求极限
随机试题
A.齿状线B.刍线C.肛窦D.痔环E.直肠横襞皮肤和黏膜的分界线是
易袭阳位,具有升发向上特性的邪气是
下列选项中,与所给立体图形相同的是:
我们常用的AutoCAD软件,就其应用领域而言属于_________应用。
鼠疫的主要传播媒介是
A公司的甲产品5月份发生的生产费用为10万元,甲产品5月份的完工产品成本也是10万元,则下列各项有关分析结论正确的有()。
Theygotallthepackages__________ontime.
李老师在校内开了一个超市,学生张某喝了该超市所售卖的过期的饮料,腹泻不止,在此事件中应当承担责任的是()。
1927年大革命失败后,党的工作重心
下列有关过程的叙述中错误的是()。
最新回复
(
0
)