首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)若ai≠aj(i≠j),求ATX=b的解; (2)若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
设 (1)若ai≠aj(i≠j),求ATX=b的解; (2)若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
admin
2019-08-23
41
问题
设
(1)若a
i
≠a
j
(i≠j),求A
T
X=b的解;
(2)若a
1
=a
3
=a≠0,a
2
=a
4
=-a,求A
T
X=b的通解.
选项
答案
(1)D=|A
T
|=(a
4
一a
1
)(a
4
一a
2
)(a
4
一a
3
)(a
3
一a
1
)(a
3
一a
2
)(a
2
一a
1
),若a
i
≠a
j
(i≠j),则D≠0,方程组有唯一解,又D
1
=D
2
=D
3
=0,D
4
=D,所以方程组的唯一解为X=(0,0,0,1)
T
. (2)当a
1
=a
3
=a≠0,a
2
=a
4
=一a时, [*] 方程组通解为X=k
1
(一a
2
,0,1,0)
T
+k
2
(0,一a
2
,0,1)
T
+(0,a
2
,0,0)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/alc4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。计算并化简PQ。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
设向量组α1=(a,0,10)T,α2=(—2,1,5)T,α3=(—1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β不可由α1,α2,α3线性表出。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn—r线性无关。
向量组α1=(1,—2,0,3)T,α2=(2,—5,—3,6)T,α3=(0,1,3,0)T,α4=(2,—1,4,7)T的一个极大线性无关组是_______。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设A,B,C是三个随机事件,P(ABC)﹦0,且0<P(C)<1,则一定有()
随机试题
汽车燃油经济性的评价,一般通过燃油消耗量试验来确定。()
A.1.5~2.0mmB.0.35~0.5mmC.0.8~1.5mmD.1.8~2.0mmE.2.0mm以上上前牙PFM全冠颈缘预备至少
下列属于电算主管岗位职责的是()。
某旅行社组织的团队游客,在乘坐登山缆车时,因严重超载发生旅游安全事故,造成十余名游客死亡,二十名游客受伤,对此事故的调查处理应当适用()。
课堂教学评价结果的反馈通常以()的形式开展,其主要的方法是评价面谈。
最近,研究人员通过筛选14.7万个化合物,发现了5种能够刺激细胞变成神经细胞形式的分子。随后,开发出了这些分子的“变异型”化合物——Isx-9。研究中,他们在培养取自啮齿动物大脑海马体部位的神经干细胞时,加入了化合物Isx-9,结果神经干细胞聚集起来并形成
156,183,219,237,255,()
千百年来,服装的功能和价值无外乎实用性和美观性两大范畴。然而,科技的_______________将赋予服装更多的属性。在不久的将来,你打开衣柜,里面有可以播放音乐的外套,可以测量脉搏和血压的运动衣、带有保暖功能的袜子,甚至有一双可以识别你情绪的手套。这并
下列说法不正确的是()。
【B1】【B2】
最新回复
(
0
)