首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组,则( )正确.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组,则( )正确.
admin
2019-07-10
55
问题
设η
1
,η
2
,η
3
为3个n维向量,AX=0是n元齐次方程组,则( )正确.
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n—3,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系.则它也是AX=0的基础解系.
D、如果r(A)=n—3,并且AX=0每个解都可以用η
1
η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
答案
D
解析
A缺少n—r(A)=3的条件.
(B)缺少η
1
,η
2
,η
3
线性无关的条件.
(C)例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系.
要说明D的正确,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关.方法如下:
设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是
3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,
则 r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解.
转载请注明原文地址:https://kaotiyun.com/show/aoN4777K
0
考研数学二
相关试题推荐
已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小量,则()
已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(x,y)=0所围成的图形绕直线y=-1旋转所成旋转体的体积。
设z=f(lnx+),其中函数f(u)可微,则x=_______。
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_______。
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
已知线性方程组(1)a,b为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时,求出方程组的全部解.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-证明:当x≥0时,e-x≤f(x)≤1.
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设A是n阶矩阵,Am=0,证明E-A可逆.
随机试题
《拣麦穗》中“那个皱巴巴的,像猪肚子一样的烟荷包”象征( )
普通股票是最基本、最常见的一种股票,普通股票的股利不完全随公司盈利的高低而变化。( )
“一对多”基金专户理财要求账户人数上限为()人,每个客户准入门槛不低于()万元。
建立系统论的科学家是()。
Writeanessayof160—200wordsbasedonthefollowingdrawing.Inyouressay,youshould1)describethedrawingbriefly,
在VisualFoxPro中,有关参照完整性的删除规则正确的描述是( )。
下列给定程序中函数fun的功能是:用递归算法计算斐波拉契数列中第n项的值。从第1项起,斐波拉契数列为:1,1,2,3,5,8,13,21。…例如,若给n输入7,则该项的斐波拉契数值为13。请改正程序中的错误,使它能得出正确结果。注意:不要改动main
Theostrich,thelargestbirdintheworldatpresent,livesinthedrierregionsofAfricaoutsidetheactualdeserts.Becauseo
TheReputationInstitute,aconsultancy,hasrevealedtheresultsofitslatest"Reptrack"CorporateReputationSurveyVariouss
Thelong-anticipatedHongKongDisneyland,the11thDisney-themedParkintheworldandthefirstinChina,successfullyopened
最新回复
(
0
)