首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组,则( )正确.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组,则( )正确.
admin
2019-07-10
51
问题
设η
1
,η
2
,η
3
为3个n维向量,AX=0是n元齐次方程组,则( )正确.
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n—3,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系.则它也是AX=0的基础解系.
D、如果r(A)=n—3,并且AX=0每个解都可以用η
1
η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
答案
D
解析
A缺少n—r(A)=3的条件.
(B)缺少η
1
,η
2
,η
3
线性无关的条件.
(C)例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系.
要说明D的正确,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关.方法如下:
设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是
3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,
则 r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解.
转载请注明原文地址:https://kaotiyun.com/show/aoN4777K
0
考研数学二
相关试题推荐
若函数在x=0处连续,则()
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)=o(h2)。
设数列{xn}收敛,则()
设D是由曲线y=x1/3,直线x=a(a>0)及x轴所围成的平面图形。Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积。若Vy=10Vx,求a的值。
设函数y=y(z)由参数方程确定,则d2y/dx2|t=0=_______。
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T都是齐次线性方程组AX=0的解.求A.
设n阶矩阵(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P-1AP为对角矩阵.
设A,B为三阶矩阵,满足AB+E=A2+B,E为三阶单位矩阵,又知A=.求矩阵B.
设h(t)为三阶可导函数,u=h(xyz),h(1)=f"xy(0,0),h’(1)=f"yx(0,0),且满足=x2y2z2h"’(xyz),求u的表达式,其中
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
随机试题
一般抹灰工程的水泥砂浆不得抹在()上。
男性,40岁,因贫血输全血5分钟后出现寒战、高热、腰痛,心前区压迫感,全身散在荨麻疹,血压80/60mmHg,尿呈酱油色
黄疸伴右上腹痛可见于
急性心梗并发心力衰竭,24小时内禁用的是()
患者,女性,26岁,因与家人吵架服毒。询问家属不能准确说出毒物的名称。查体:神志不清,双侧瞳孔缩小。在毒物不明确的情况下,护士的正确处理方法是
中、硬底质的一次性维护疏浚工程,设计底边线以内水域()。
A注册会计师是M公司2006年度会计报表审计的项目经理,助理人员对涉及到错误与舞弊问题需要B注册会计师解答,请代为作出专业判断。
所谓基准成本的感应性,是指成本变化时顾客服务水平的变化程度。
简述遗传素质在人的身心发展中的作用。
Onehundredyearsago,therewasacleardifferenceamongtownandcountry.Butthemotorcarhaschanged【S1】_________.
最新回复
(
0
)