首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
(04年)设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
admin
2019-03-11
53
问题
(04年)设n阶矩阵A的伴随矩阵A
*
≠O,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
由A
*
≠O知A
*
至少有一个元素A
ij
=(-1)
i+j
M
ij
≠0,故A的余子式M
ij
≠0,而M
ij
为A的n-1阶子式,故r(A)≥n-1,又由Aχ=b有解且不唯一知r(A)<n,故r(A)=n-1,因此,Aχ=0的基础解系所含向量个数为n-r(A)=n(n-1)=1,只有B正确.
转载请注明原文地址:https://kaotiyun.com/show/atP4777K
0
考研数学三
相关试题推荐
若λ1,λ2是矩阵A不同的特征值,α1是对应于λ1的特征向量,则α1不是λ2的特征向量.
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
a为什么数时二次型x12+3x22+2x32+2ax2x3用可逆线性变量替换化为2y12一3y22+5y32?
将函数f(x)=xarctanx一展开成x的幂级数,并求其收敛域.
判别下列级数的敛散性(包括绝对收敛或条件收敛):
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).求θ的矩估计量和最大似然估计量;
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)