首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
admin
2018-06-12
40
问题
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
选项
答案
设提前贮备n件商品,则商店获利为Y=g(X;n),依题意n应使EY达到最大.为此需先写出利润函数Y=g(X;n),由题设知,当商店有n,件产品时,该季节商店获利为 [*] (单位:百元),其中需求量X的概率分布为P{X=k}=[*](k=1,2,…,100),故 [*] n应使EY
n
达到最大.为求n,我们考虑h(χ)=503χ-3χ
2
,令h′(χ)=503-6χ=0,解得χ=[*]=83.8,故n=84,即商店最佳进货量为84件.
解析
转载请注明原文地址:https://kaotiyun.com/show/bFg4777K
0
考研数学一
相关试题推荐
已知α1,α2及β1,β2均是3维线性无关向量组.(Ⅰ)若γ不能由α1,α2线性表出,证明α1,α2,γ线性无关.(Ⅱ)证明存在三维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
设袋中有编号为1~N的N张卡片,其中N未知,现从中有放回地任取n张,所得号码为x1,x2,…,xn.(Ⅰ)求N的矩估计量,并计算概率;(Ⅱ)求N的最大似然估计量,并求的分布律.
设则f(x,y)在点(0,0)处()
A为3阶实对称矩阵,A的秩为2,且(1)求A的所有特征值与特征向量;(2)求矩阵A.
已知A是一个3阶实对称正定的矩阵,那么A的特征值可能是()
设在一个空间直角坐标系中,有3张平面的方程:P1:χ+2y+3z=3;P2:2χ一2y+2az=0;P3:χ-ay+z=b.已知它们两两相交于3条互相平行的不同直线,求a,b应该满足的条件.
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
设离散型二维随机变量(X,Y)的取值为(χi,yj)(i,j=1,2),且P{X=χ2}=,P{Y=y1|X=χ2}=,P{X=χ1|Y=y1}=,试求:(Ⅰ)二维随机变量(χ,Y)的联合概率分布;(Ⅱ)X与Y的相关系数ρXY;
曲线的渐近线有()
求函数f(x,y,z)=x2+y2+z2在区域x2+y2+z2≤z+y+z内的平均值.
随机试题
我们已知的世界上最早的成文法出现在()
鉴证业务基本准则不包括()
巴比妥类药物与氢氧化钠溶液共热时,可使
避雷带及其支持件安装应位置正确.固定牢固,防腐良好。避雷带规格应符合设计要求和规范规定()。
下列各项中,不应计入不良贷款的是()。
中学共青团的活动如何更有效地配合教学工作?
河里的沙子进入河蚌体内,河蚌会不舒服,它就会从体内分泌一种物质,包围这粒沙子,最终形成珍珠,你如何看待这个现象?
某公司在选派与外商谈判的人员时,有甲、乙、丙、丁四位候选人。为了组成最佳谈判阵容,公司有如下安排:如果派甲去,而且不派乙去,那么丙和丁中至少要派一人去。如果公司没有派甲去,最能支持这一结论的是:
OncefoundalmostentirelyinthewesternUnitedStatesandinAsia,dinosaurfossilsarenowbeingdiscoveredonallsevencont
A、Tomorrowmorning.B、Allright.C、Heisnotin.D、That’sOKA问题问的是我们的经理什么时候动身去纽约。对于此类问句的回答,一般直接答出具体的时间即可;如果自己也不知道,可以回答Sorry,I
最新回复
(
0
)