首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2一α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3,则R(β1,β2,β3,β4,β5)等于( ).
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2一α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3,则R(β1,β2,β3,β4,β5)等于( ).
admin
2020-09-25
63
问题
已知四维向量组α
1
,α
2
,α
3
,α
4
线性无关,且向量β
1
=α
1
+α
3
+α
4
,β
2
=α
2
一α
4
,β
3
=α
3
+α
4
,β
4
=α
2
+α
3
,β
5
=2α
1
+α
2
+α
3
,则R(β
1
,β
2
,β
3
,β
4
,β
5
)等于( ).
选项
A、1
B、2
C、3
D、4
答案
C
解析
(β
1
,β
2
,β
3
,β
4
,β
5
)=(α
1
,α
2
,α
3
,α
4
)
记C=
.因为α
1
,α
2
,α
3
,α
4
线性无关,则R(β
1
,β
2
,β
3
,β
4
,β
5
)=R(C).
而C→
所以R(β
1
,β
2
,β
3
,β
4
,β
5
)=R(C)=3.故选C.
转载请注明原文地址:https://kaotiyun.com/show/bPx4777K
0
考研数学三
相关试题推荐
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
微分方程y"+2y’+5y=0的通解为________。
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
若绝对收敛,条件收敛,则()
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
随机试题
兴奋性突触后电位
Wheredothespeakerslive?
课外活动是学校课程体系中的一个重要组成部分,是进行个性特长教育的重要途径,但它与全面发展理念无关。()
A.胆色素B.CO2及H2OC.胆汁酸D.铁卟啉体内血红素代谢的终产物是
患者一周来腹胀,时而隐隐作痛,不思饮食,泻下清稀,四肢欠温,舌淡苔白润,脉沉缓,证属()
患者,女,34岁。因家庭矛盾后自服敌敌畏40ml,经当地医院用阿托品、解磷定等抢救后,送来急诊。体温38.6℃,神志模糊,瞳孔散大,皮肤绯红、干燥,抽搐,呼吸不规则、浅表双吸气及骤停,双肺有散在湿性啰音;心率150次/min,律齐;下腹膨隆,叩诊呈固定浊音
患者,女性,48岁,理发员。下肢酸胀、沉重5年,活动或休息后减轻。体检见小腿内侧有蚓状团块,足靴区有色素沉着。若采取手术治疗,必须是
下列关于外观设计专利申请中提交的图片或照片,不符合规定的是:
在TCP协议中,建立连接时被置为1的标志位和所处的字段是()。
(字处理题)办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”、“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在文档开始的“插入目录”标记处插入只包含第1、2两级标题的目录并
最新回复
(
0
)