首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
admin
2019-03-07
32
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:设ε
j
为E
m
的第j个列向量,由必要性假定,方程组Ax=ε
j
有解c
j
,即Ac
j
=ε
j
,(j=1,2,…,m),→A[c
1
c
2
… c
m
]=[ε
1
ε
2
… ε
m
]=E
m
,记C=[c
1
c
2
… c
m
],则有AC=E
m
,故m=r(E
m
)=r(AC)≤r(A)≤m,→r(A)=m;充分性:设r(A)=m,即A的行向量组线性无关,故[*]的行向量组线性无关,从而有,r([*])=m,由有解判定定理,知方程组Ax=b有解(其中[*]=[A┊b]).
解析
转载请注明原文地址:https://kaotiyun.com/show/bX04777K
0
考研数学一
相关试题推荐
设总体X服从正态分布N(μ,σ2),其中μ已知,σ2未知.X1,…,Xn是取自总体X的简单随机样本,则下列样本函数中不是统计量的是()
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。(Ⅰ)求a1,a2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3
设向量组(Ⅰ)可以由向量组(Ⅱ)线性表示,且R(Ⅰ)=R(Ⅱ),证明:向量组(Ⅰ)与(Ⅱ)等价。
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1)。(Ⅰ)求向量组的秩;(Ⅱ)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示。
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(I)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
(2017年)设薄片型S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C。(I)求C在xOy面上的投影曲线的方程;(Ⅱ)求S的质量m。
(2000年)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向。
设k为常数,方程kx一+1=0在(0,+∞)内恰有一根,求k的取值范围.
设,a,b,c是三个互不相等的常数,求y(n).
随机试题
《中华人民共和国消费者权益保护法》规定,经营者为消费者提供其生产、销售的商品或者提供服务,应当遵守本法。()
阅读《宝玉挨打》中的小说片段,然后回答下列问题。原来宝玉会过雨村回来听见了,便知金钏儿含羞赌气自尽,心中早又五内摧伤,进来被王夫人数落教训,也无可回说。见宝钗进来,方得便出来,茫然不知何往,背着手,低头一面感叹,一面慢慢地走着,信步来至厅上。刚转过屏门,
更年期妇女卵巢衰老的表现不包括
肘关节脱位的特有体征是
科学研究是现代高等学校最基本的职能。()
王老师是数学老师,相当自信。他认为,只要他努力,就能提高数学学习困难学生的成绩。这说明王老师哪种心理特征较好?()
拘留后,除有碍侦查或者无法通知的情形以外,应当在24小时以内,把拘留的原因和羁押的处所通知被拘留人的家属或者他的所在单位。()
实行对外开放和积极参与经济全球化的进程,是中国特色社会主义经济理论的一个重要任务。()
根据下面材料回答问题:下列说法正确的是()。
当χ≥0时,f(χ)=χ,设g(χ)=当χ≥0时,求∫0χf(t)g(χ-t)dt.
最新回复
(
0
)