首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2018-04-15
86
问题
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B.
(2)设
矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE—A|=|λE—B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由[*]得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由[*]得 B的特征值为λ
1
=2,λ
2
=λ
3
=1; 由[*]得r(E—A)=1,即A可相似对角化; 再由[*]得r(E一B)=1,即B可相似对角化, 故A~B. 由[*]得A的属于λ
1
=2的线性无关特征向量为[*] 由[*]得 A的属于λ
2
=λ
3
=1的线性无关的特征向量为[*] 令[*] 由[*]得B的属于λ
1
=2的线性无关特征向量为[*] 由[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为[*] 令[*] 再令[*]则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/c0X4777K
0
考研数学三
相关试题推荐
设y=y(x)(x>0)是微分方程2+y’一y=(4—6x)e-x的一个解,且=0.(I)求y(x),并求y=y(x)到z轴的最大距离.(Ⅱ)计算y(x)dx.
设A=,B=,若A~B,则y=_________.
若当x→0时,(1+2x)x—cosx~ax2,则a=____________.
设随机变量X~,向量组a1,a2线性无关,则Xa1-a2,-a1+Xa2线性相关的概率为().
设三阶矩阵A的特征值为一2,0,2,则下列结论不正确的是().
y=(x2-5x+6)|x3-3x2+2x|不可导点的个数为________个.
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
已知实二次型f(x1,x2,x2)=xTAX的矩阵A满足,且ξ1=(1,2,1)T,ξ2=(1,-1,1)T是齐次线性方程组Ax=0一个基础解系.用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;
在线段(0,1)上随机投掷2个点,该两点的距离为X.试求:(Ⅰ)X的概率密度fX(x);(Ⅱ)X的数学期望EX.求新方程的表达式;
曲线处的切线方程为_____.
随机试题
Tomlikes()foreigncoins.
发散性思维的指标有:_______、_______和独特性。
A.分节运动B.蠕动C.蠕动冲D.集团蠕动小肠不会出现的运动形式是
关于乳牙龋的药物治疗说法不正确的是
药品出库应进行
期货公司制定投资者适当性标准的实施方案后,报()备案。
目前,最重要的征信法规当属()。
注册会计师交由被审计单位负责询证函的起草、寄发和收回。()
10.Base-T以太网使用曼彻斯特编码,其编码效率为(11)%,在快速以太网中使用4B/5B编码,其编码效率为(12)%。(12)
At10:24A.M.,whatdoesMs.Corellimeanwhenshesays,"What’stheholdup?"
最新回复
(
0
)