首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2018-04-15
80
问题
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B.
(2)设
矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE—A|=|λE—B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由[*]得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由[*]得 B的特征值为λ
1
=2,λ
2
=λ
3
=1; 由[*]得r(E—A)=1,即A可相似对角化; 再由[*]得r(E一B)=1,即B可相似对角化, 故A~B. 由[*]得A的属于λ
1
=2的线性无关特征向量为[*] 由[*]得 A的属于λ
2
=λ
3
=1的线性无关的特征向量为[*] 令[*] 由[*]得B的属于λ
1
=2的线性无关特征向量为[*] 由[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为[*] 令[*] 再令[*]则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/c0X4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立同分布,其中P{X—i}=,i=1,2,3令U=max(X,Y),V=min(X,Y).(Ⅰ)求(U,V)的联合分布;(Ⅱ)求P{U=V);(Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(-1,1,0,2)T+k(1,-1,2,0)T.求α1,α2,α3,α4,β的一个极大线性无关组.
函数y=|π2-x2|sin2x的不可导点个数为()
设Y1,Y2,Y3相互独立且都服从参数为p的0—1分布,令当p为何值时,E(X1X2)最小.
设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明A,B有公共特征值λ=-1;
设n阶方阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组Ⅰ:α1,α2,…,αn,Ⅱ:β1,β2,…,βnⅢ:γ2,…,γn线性相关,则()
差分方程yt+1+2yt=5t2的通解为________.
设平面区域D用极坐标表示为
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
随机试题
下列选项中,不属于组织行为研究内容的是()
Itwas______(consider)ofyounottoplaythepianowhileIwasasleep.
脊柱胸腰段骨折并完全性截瘫的患者压疮常发生部位下列哪一个不正确
建设规模的变动会引起收益的变动,项目规模的经济性是建设方案总体设计时需要考虑的重要问题。既定条件和水平不变的前提下,()产业规模经济性最不明显。
施工方项目管理的目标应符合合同的要求,具体包括()。
下列群体中,属于学校社会工作对象的是()。
著名的罗马竞技场修建于罗马帝国的()。
Americansuffersfromanoverdoseofwork【C1】______whotheyareorwhattheydo.Theyspend【C2】______timeatworkthanatanyti
对于大多数人来说,有效节食并不容易。有些人在经历了数周失败并且不快的尝试后,往往会放弃。一次成功的节食不仅要求有短期规划,如吃些指定的食物类型,同样也需要精神能源。不要把你的车变为餐厅,也不能在你的办公桌上吃午饭。要在餐桌上吃饭,最好关上电视。节食也意味着
Oneofthemostcriticalproblems【C1】______blackandotherminorityAmericanstodayisthedifficultyofentering【C2】______soc
最新回复
(
0
)