首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求a,b及可逆矩阵P,使得P-1AP=B.
求a,b及可逆矩阵P,使得P-1AP=B.
admin
2018-05-21
21
问题
求a,b及可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-B|=0,得λ
1
=-1,λ
2
=1,λ
3
=2,因为A~B,所以A的特征值为λ
1
=-1, λ
2
=1,λ
3
=2. 由tr(A)=λ
1
+λ
2
+λ
3
,得a=1,再由|A|=b=λ
1
λ
2
λ
3
=-2,得b=-2,即A [*] 由(-E-A)X=0,得ξ
1
=(1,1,0)
T
; 由(E-A)X=0,得ξ
2
=(-2,1,1)
T
; 由(2E-A)X=0,得ξ
3
=(-2,1,0)
T
, [*] 由(-E-B)X=0,得η
1
=(-1,0,1)
T
; 由(E-B)X=0,得η
2
=(1,0,0)
T
; 由(2E-B)X=0,得η
3
=(8,3,4)
T
, [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
,得(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B, 令P=P
1
P
2
-1
[*] 则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/c7r4777K
0
考研数学一
相关试题推荐
设0≤a<b,f(x)在[a,b]上连续,(a,b)内可导,证明:在(a,b)内存在三点x1,x2,x3使
设总体X的分布函数为X1,X2,…,X10为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1.(Ⅰ)求总体X的分布律;(Ⅱ)求参数θ的矩估计值;(Ⅲ)求参数θ的极大似然估计值.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
设f(x)为微分方程y’一xy=g(x)满足y(0)=1的解,其中g(x)=∫0xsin[(x—t)2]dt,则有()
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设总体X的概率密度函数为f(x)=其中λ>0为未知参数,又X1,X2,…,Xn为取自总体X的一组简单随机样本.求常数k.
随机试题
眩晕的治疗原则是( )
A.多导睡眠监测(PSG)B.食管测压C.Mtiller试验D.头颅X线测量E.纤维喉镜检查气道评估最常使用
患者,男性,46岁。胸痛1周,彩超疑胸主动脉病变,临床拟行胸部CT检查以确诊。若临床怀疑为胸主动脉夹层,其扫描范围是
全口义齿人工牙的选择原则是
常用于表示微粉流动性的术语有
每一年度结束后30天内,期货交易所应向中国证监会提交其财务会计报表。( )
位于市区的某大型百货商场为增值税一般纳税人,2015年9月发生如下几项业务:(1)将上月购进的化妆品对外销售,不含税售价为11000元,本月对外销售珠宝3000套,不含税销售额140000元。(2)商场以分期收款方式销售一批进日家电,合同规定不含税销售
篮球行进间单手肩上低手投篮的脚步动作(右手为例)是()。
差分方程的通解为.
AcupunctureRecently,acupuncturehasbecomea【1】______wordinAmerica.【1】______Acupuncturewasperformedi
最新回复
(
0
)