首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
admin
2019-07-12
78
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解必是
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+(β
1
-β
2
)/2.
B、k
1
α
1
+k
2
(α
1
-α
2
)+(β
1
+β
2
)/2.
C、k
1
α
1
+k
2
(β
1
+β
2
)+(β
1
-β
2
)/2.
D、k
1
α
1
+k
2
(β
1
-β
2
)+(β
1
-β
2
)/2.
答案
B
解析
本题考查解的性质与解的结构.从α
1
,α
2
是Ax=0的基础解系,知Ax=b的通解形式为
k
1
η
1
+k
2
η
1
+ξ,
其中,η
1
,η
2
是Ax=0的基础解系,ξ是Ax=b的解.
由解的性质知:α
1
,α
1
+α
2
,(β
1
-β
2
)/2,α
1
-α
2
,β
1
-β
2
都是Ax=0的解,(β
1
+β
2
)是Ax=b的解.
那么(A)中没有特解ξ,(C)中既没有特解ξ,且β
1
+β
2
也不是Ax=0的解.(D)中虽有特解,但
α
1
,β
1
-β
2
的线性相关性不能判定,故(A)、(C)、(D)均不正确.
唯(B)中,(β
1
-β
2
)/2是Ax=b的解,α
1
,α
1
+α
2
是Ax=0的线性无关的解,是基础解系.故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/cRJ4777K
0
考研数学三
相关试题推荐
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求(X,Y)的概率分布.
差分方程yx+1一yx=x2x的通解为___________.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2一F3α3,α1+4α2+9α3线性无关.
设向量组(I):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设A为n阶实对称可逆矩阵,二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设n阶矩阵A与对角矩阵合同,则A是().
设常数k>0,则级数
若级数收敛(un>0),则下列结论正确的是().
证明:其中a>0为常数.
随机试题
在冰雪路面上行车,必须降低车速、加大安全距离。
建立国际政治经济新秩序必须遵守的原则是
以下镇痛药不属于麻醉药品的是
重度二尖瓣狭窄表现为主动脉瓣关闭不全表现为
适用假释如果有特殊情况,经最高人民法院核准可以不受有期徒刑执行原判刑期1/2以上、无期徒刑实际执行13年以上的限制。这种特殊情况是指:()
一般情况下,建设项目的每个单项影响评价的工作等级()相同。
通货膨胀率是衡量()的宏观经济目标。
根据合同法律制度的规定,下列情形中,买受人应当承担标的物灭失风险的有()。
在数据通信中,为了提高线路利用率,一般使用多路复用技术。最基本的多路复用技术有频分多路复用、时分多路复用和码分多路复用等,目前ADSL采用的是上【】多路复用技术。
关于网络操作系统的基本任务,下列说法中错误的是______。
最新回复
(
0
)